

Development of cabling techniques for Nb₃Sn and Bi-2212 wires

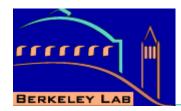
R.M.Scanlan, D.R.Dietderich, and H.C.Higley WAMS 2004

BERKELEY LAB

Presentation Outline

- Review of NbTi cabling parameters
- Modifications of cabling parameters for Nb₃Sn
- Modifications of cabling parameters for Bi-2212
- Cabling techniques for special cables (mixed strands, cores, large keystone angles)

BERKELEY LAB


Design process for superconducting cables

• Select magnet design parameters

• Select cable parameters to meet magnet design requirements

• Iterate cable parameters to reduce Ic degradation and improve coil winding behavior

BERKELEY LAB

Cable parameter spreadsheet

Input:

- 1. Strand diameter
- 2. Number of strands
- 3. Pitch angle
- 4. Minimum cable width

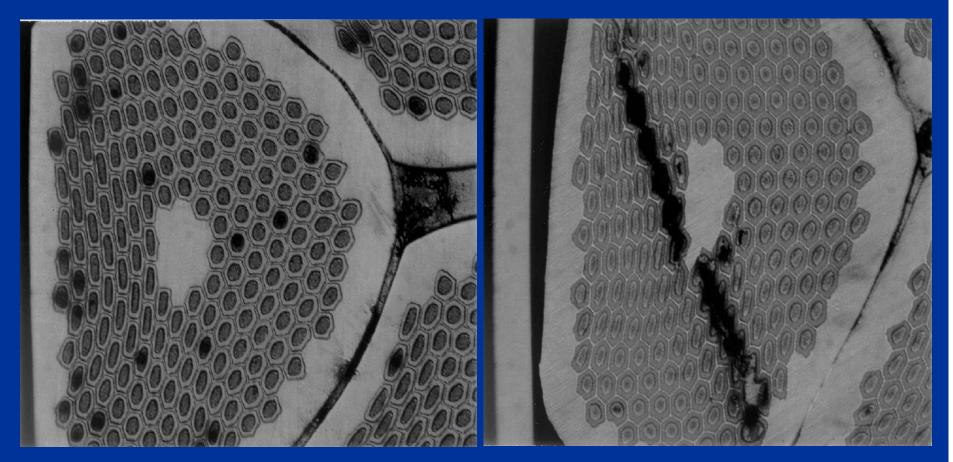
Calculate:

1. Allowed keystone angle

2. Cable compaction at middle, thick edge, and thin edge for various cable thicknesses

	INPUT A	1							Minimum	Mandrel
No. of Strands =	10		Cable W	/idth =	5.2015					4.2015
Strand DIA. =	1	Ca	ble MID	Thk.=	2					
Pitch Angle =	16									
CALC Compacted Cable RESET			Pitch le	ngth =	36.2796					
			Der	nsity =	0.7854	or	PI/4			
KEGET										
Module: [B]		COMP	ACTED	ABLE						
	INPUT B									
Cable Width =	0				MIN.	MID	MAJ.		NEEW's	formula
Cable Mid Thk. =	0								Mid Pack	ing Factor
Keystone angle. =	0	Cab	le Thicki	ness =	0	0	0		#DIV/0!	
Pitch length =	0		Der	nsity =	#DIV/0!	#DIV/0!	#DIV/0!			
			Pitch A	ngle =	#DIV/0!				Print	Area
Title:	Paste	Paste	Paste	Paste	Paste	Paste	Paste	Paste	Paste	Paste
lteration #	А	В	С	D	E	F	G	н	1	J
Iteration #			-	-			_		-	
No. of Strands =										
Strand DIA. =										
Pitch Angle =										
Cable Width =										
Cable MID Thk. =										
Pitch length =										
Density =										
2 0	Α	В	С	D	E	F	G	н	1	J
COMPACTED		-					-		· ·	
Cable Width =										
Cable Mid Thk. =										
Keystone angle. =										
Pitch length =										
Pitch Angle =										
<u>Cable Thickness</u>										
MINOR EDGE =										
MID =										
MAJOR EDGE =										
Packing Factor										
MINOR EDGE =										
MID =										
MAJOR EDGE =										

BERKELEY LAB


Parameters modified for Nb₃Sn include:

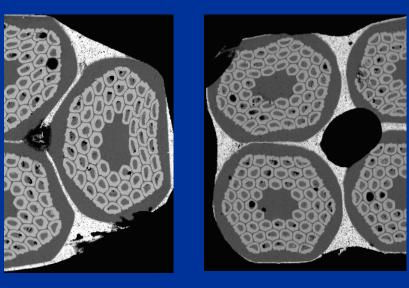
- Cable width--minimum width increased after subelement shearing was observed using NbTi cable parameters
- Cable compaction--reduced to minimum acceptable for coil winding
- Lubrication is changed depending on whether cable is to be used in wind/react or react/wind magnet

BERKELEY LAB

PIT Nb₃Sn strands at edge of Rutherford cable

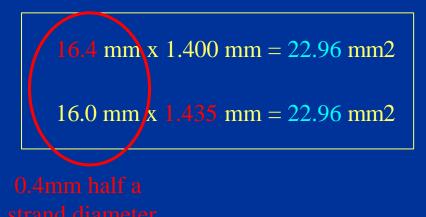
Moderately compacted

Highly compacted


BERKELEY LAB

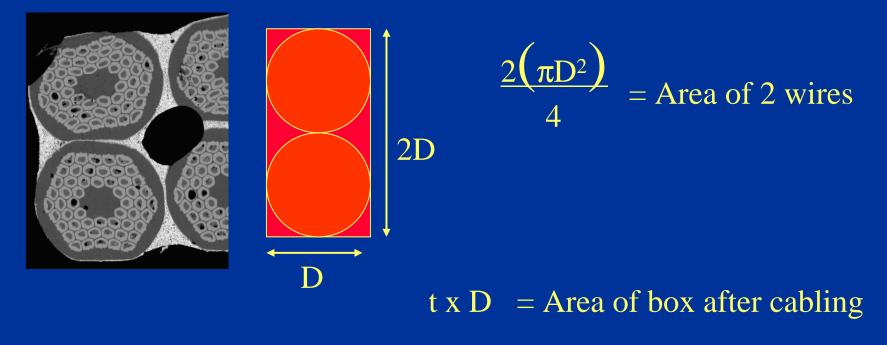
3/22/04

Cable Compaction


Decouple thickness & width

0.8 mm strand diameter 40 Strands Area = 20.11 mm² 87 % Compaction Problem with Area Compaction

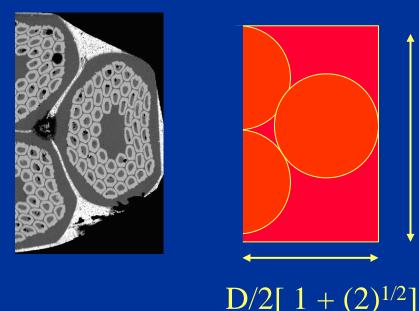
2 Cables: Same compaction



3/22/04

Superconducting Magnet Program

BERKELEY



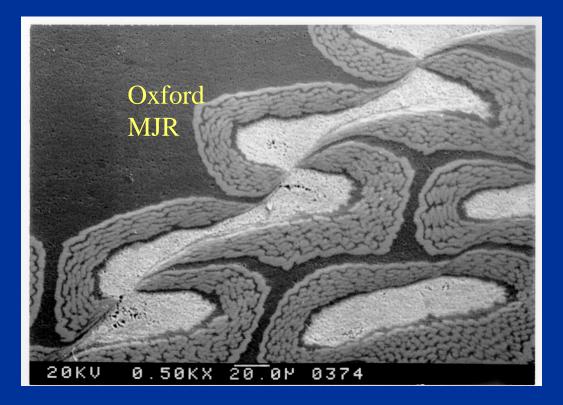
$$\frac{t}{2D} = \frac{\pi}{4} = 0.785$$

BERKELEY LAB

Edge Compaction-2

- More void space near edge of cable (0.65 filling factor
- Must balance thickness reduction and width reduction

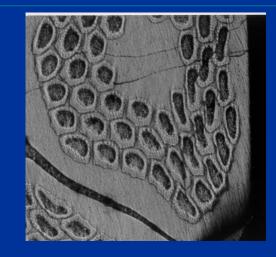
Note: effect of friction between rolls and strands is not in model


2D

BERKELEY LAB

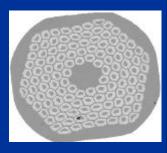
Can we quantify cable degradation?

• Polished crosssection of cable: sheared subelements

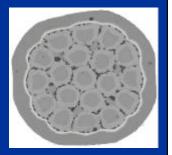


BERKELEY LAB

Cable quality control

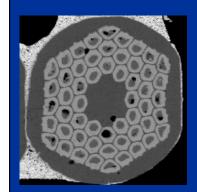

•Area of edge facets is a measure of strand deformation

•Use CERN optical imaging equipment to monitor facets BERKELEY LAB 3/22/04



Cables for D-20, RD-3, and HD-1

D-20

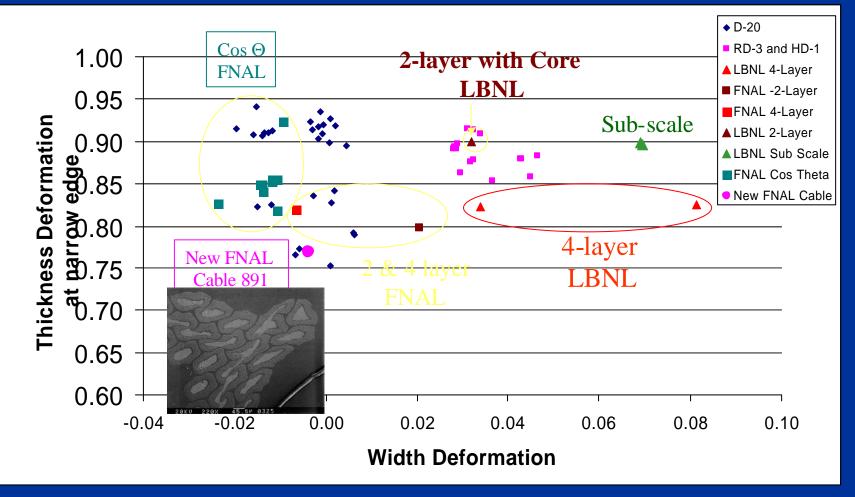


LBL Cable # 523 MJR-TWCA

 D-20 Outer RD-3 Rect. D-20 1.00 **Thickness Deformation** HD-▲ D-20 Inner 0.95 RD-3 & HD-1 *** 0.90 . 0.85 Mechanically 0.80 Key. D-20 Good Unstable 0.75 Zone Abandoned Keystoned **Thin Edge** 0.70 **C** 0.65 D-20 Cable Damaged Zone 0.60 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 Width Deformation

RD-3

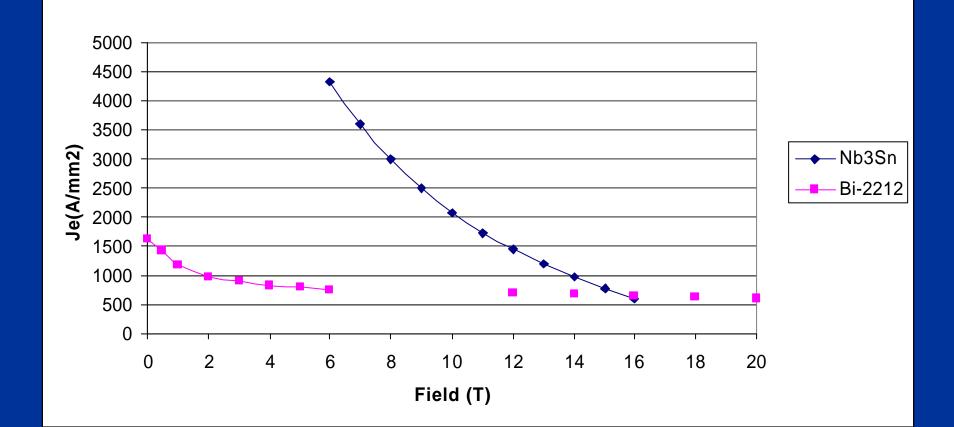
LBL Cable # 805R Oxford-ORe


LBL Cable # 522 IGC-Int. Tin

BERKELEY LAB

3/22/04

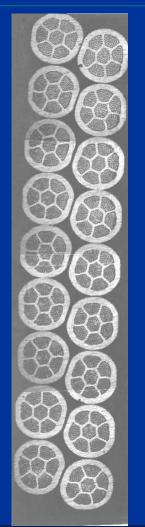
Fully Keystoned Cables for LARP


BERKELEY LAB

Superconducting Magnet Program

3/22/04

Comparison of Je for Nb₃Sn and Bi-2212



BERKELEY LAB

Bi-2212 round wire shows promise for accelerator magnets

- Jc(12T, 4.2K, non-silver) > 2000 A/mm² in new material (Showa, OST)
- Long lengths(> 1500 m) are being produced
- New result: 30 strand cable; Ic = 6.8 kA at 6 T
- Over 1000 m of 30 strand cable produced in 2003-2004

BERKELEY LAB

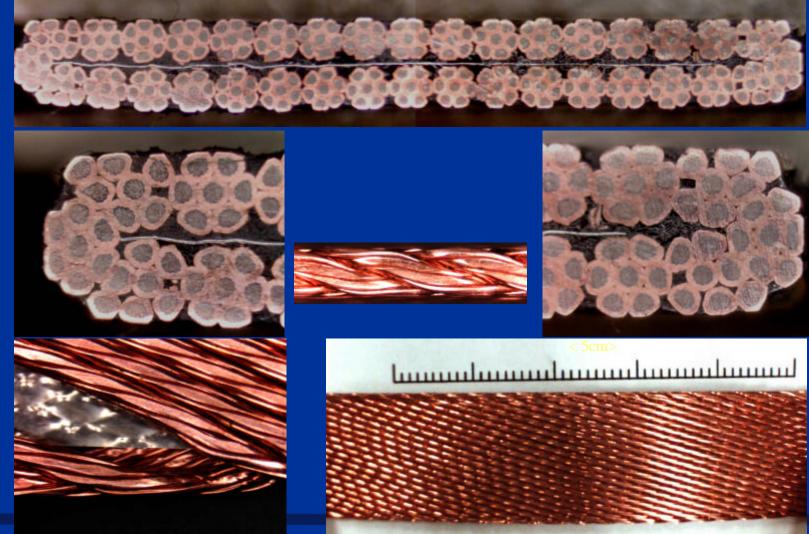
Bi-2212 R&D goals for 2003-2004 (Work for others contract with Showa)

- Reduce Ic degradation for 30 strand x 0.8 mm wire diam. cables
- Evaluate cabling properties of wires with different Ag alloy compositions
- Demonstrate long length fabrication (>300 m)
- Status:

Long length fabrication established Methods for improving wire quality identified Ic degradation reduced to 10-15 % range

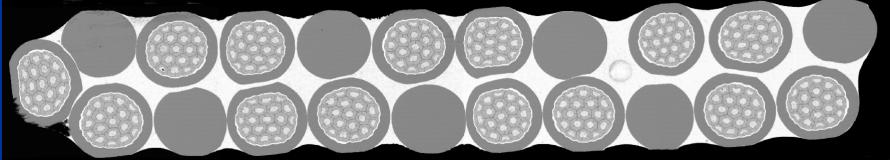
Showa goal is to demonstrate long length cable performance to Chubu Electric for their proposed SMES project

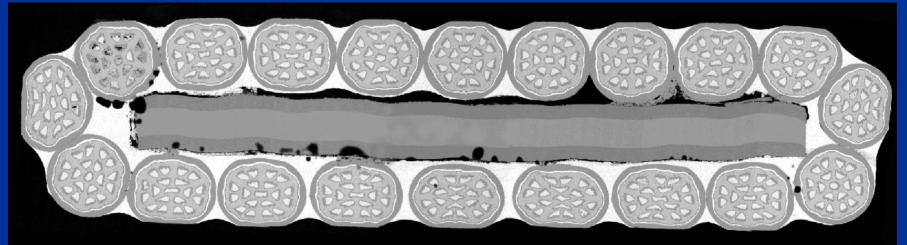
BERKELEY LAE


Mutual benefits from Showa/LBNL/BNL collaboration include:

- Cabling expertise (LBNL) and Ic testing (BNL)
- Wire for cabling R&D at LBNL (30,000 m of wire delivered in 2003-2004)
- Cable for react and wind magnets at BNL
- Cable and coil reaction (Showa) for wind and react magnets at LBNL

BERKELEY LAB


FNAL R&W R3I-00741a Mfg. LBNL 2/17/00



Cu added at cabling stage

Cu added as strands

Cu added to core

BERKELEY LAB

Summary

Cabling guidelines are being developed for "difficult to cable" materials (Nb₃Sn; Bi-2212) - nearly complete for rectangular cables

- -just begun for keystoned cables

Non-standard cables have been evaluated; all are more difficult to fabricate than the standard Rutherford design – Mixed strand cables – Cored cables

-Two-level cables