

Accelerator Magnet Fabrication as Related to Strand and Cable Properties

Stephen A. Gourlay

Lawrence Berkeley National Laboratory

WAMS, Archamps

March 24, 2004

- Nb₃Sn for Magnet Builders
 - Potential
 - Challenges
- Implications for Design and Fabrication
 - Some Primary Examples using HD-1
 - Wind and React
 - Cables and Winding
 - Reaction
 - Design and Analysis
 - Some words on R&W vs W&R

Process Derived from Conductor and Cable Properties

Conductor Performance Comparison

World record J_c values for Nb₃Sn

Oxford Superconducting Technology

The Potential . . .

- Nb₃Sn has some excellent properties for magnets
 - High current density at high field
 - Much higher thermal margin than NbTi
- This potential has been demonstrated up to 16 T (so far)
 - Major mechanical shortcomings have been overcome
 - What are ultimate limits?

The Challenges . . .

- Higher sensitivity to cabling degradation
 - Effects are more detrimental to magnet performance
 - Don't know the limits on keystone angle yet
- Brittle and strain sensitive
 - Large temperature range (1000 K 4 K)
 - Issue for long magnets?
- Field quality
 - Insulation thickness
 - Coil size control/uniformity
 - Magnetization

Still need to study length-related issues

Fractional Length Change in Nb₃Sn

The Stress/Strain Issue

- Nb₃Sn is known to be <u>strain</u> sensitive
 - Depends on field (consider this in design choices)
- What we can say
 - Compressive stress up to 150 MPa is OK (HD-1)
 - Avoid <u>non-uniform</u> compression
 - Avoid tension
 - Measured cable samples show variations depending on sub-structure
 - Reversible degradation up to 200 MPa

More work needs to be done to understand limits for magnets

Design, Analysis and Fabrication

- In order to use conductor at it's full potential we need . . .
- Designs that mitigate constraints and maximize performance
- Analysis and fabrication techniques to implement the designs

Fabrication Methods

- Nb₃Sn requires . . .
 - approximately 100 hour heat treatment at 650 °C
 - epoxy impregnation to support brittle cable and provide insulation
 - limiting stress to < 150 MPa (a little higher may be OK)

Wind and React

HD-1 as an example

Cable Considerations

Large cable with small bend radius

increase winding tension

need stable cable

higher compaction

Degradation vs Mechanical Stability

 Nb_3Sn is more susceptible to degradation and consequences are more severe Filament coalescing RRR

greater possibility of degradation

Instability?

HD-1 Cable and Coil

- 36 strands, 0.8 mm diameter
- 1.36 X 15.7 mm (rectangular)
 - Initial thickness = 1.41 mm
 - Annealed
 - Re-rolled to 1.36 mm
- 18 kg winding tension
- 10 mm bend radius (minimum for this cable)
- No microscopically observable damage
- Insulation
 - S-2 glass (0.107 mm @ 14 MPa)

Layer-1 with End Spacer

Horseshoe and Voltage Taps

Evaluation of Cable Parameters

- Determine the deformation limits of different strands
- Cables with a mixture of Cu and superconducting stands
- Cables with Cu-Stainless Steel cores
- Keystoned cables with a core

- Cable handling and winding characteristics database
- Relate cable parameters
 - Type of strand, width & thickness, with and without a core, etc.
 - to winding mechanics
 - Popped strands, bending hard way and easy way

Reaction Prep

- Coil is constrained in all dimensions
 - Gap in island to accommodate dimension change
 - 14 MPa normal to conductor face
 - Moderate compression axially and "vertically"

Wind/React – React/Wind?

- Wind and React
 - Small bending radii
 - Strand coupling
 - Cores?
 - Insulation
 - Length issues
 - Reaction
 - Strain/dimension
 - control
 - Handling

- React and Wind
 - Large bending radii required
 - Some problem in sizing coil?
 - Handling and winding
 - QC challenge
 - Only option for HTS

Need to investigate this ASAP

Long History with Nb₃Sn

- Current effort is on react and wind ("10-turn coils")
 - Nb₃Sn
 - HTS (Bi-2212)

• To Date:

- $-Nb_3Sn$
 - Early tests with ITER were very successful
 - Results with high performance strand have shown significant degradation

But, still on learning curve

– HTS

• Results are encouraging . . .

BNL Plans

High Field R&D: Nb₃Sn and HTS flat coil fabrication and testing.

- Goal of 12 T react and wind magnet next year
- Background magnet for cable testing

Find the best conductor for the next steps of the R&D:

- Verify stability of conductor (MJR) used in FNAL and BNL racetracks fabricated with R&W tech.
- Study bending degradation of PIT and RRP strands
- Auxiliary studies:
 - Measurement of pre-strain at 4.2K (NIST)
 - Check for cracks under large bending (Univ. of WM)

Plan for React & Wind development - II

Cable and coil R&D

- Measure Ic of cables bent after HT
 - Synthetic oil or plating/coating to prevent sintering during HT

- Measure inter-strand resistance in cable and coil samples
 - Develop techniques to remove residues of oil after HT
- Fabricate and test small magnets to assess technology

Application of Design Tools

- Integrated design
 Cross section generate coil
 CAD FEA
- 3-D analysis is standard
 - Control/limit maximum stress on conductor

Axial support

Visual inspection

Measured Quench Locations

Modified Design to Reduce Conductor Movement in the Ends

Design Choice Example

- We have a point in parameter space that we are comfortable with
- How far can constraints or parameters be pushed for accelerator magnet applications?

Thanks to

Shlomo Caspi, Dan Dietderich, Paolo Ferracin, Hugh Higley, Roy Hannaford, Ron Scanlan. LBNL
Arup Ghosh, Ramesh Gupta, BNL
Giorgio Ambrosio, FNAL

Ancillary Slides

HD-1 Demonstrates the Viability of a New Technological Tool

HD-1 Objectives

- Push limit on dipole fields and stresses
- Study the properties of block-coil designs
 - Suitable for very high field accelerator dipoles
 - Efficient technology R&D
- Success based on
 - Improved conductor
 - Integrated design approach
 - Fabrication techniques

16 Tesla max field is 4.5 Tesla higher than closest competitor

Test at 1.8 K could exceed 17 Tesla

Training Tests and Studies

Sub-scale coil with surface-mounted strain gauges

Scaled version of main magnet Simple fabrication, simple testing Field range of 9 – 12 Tesla

LBNL Prototype Highlights

RD3-b - 14.5 Tesla

- 13.5 Tesla

Coils in Reaction Oven

Potting Fixture

Impregnation

Begin core stack

Completed core module

Yoke and shell

Bladders in (lead end)

Rod Loading

