

Cable Design for Fast Ramped SC Magnets (Cos- q Design)

Arup Ghosh

Arup Ghosh

Workshop on Accelerator Magnet Superconductors ARCHAMPS 22-24 March 2004

Introduction

- Most high-field SC-synchrotron magnets are ramped at low dB/dt, *Tevatron* being one of the highest with *dB/dt* ~ 60-125 *mT/s*.
- There are also several lower field (~2T) synchrotrons which are cycled at much higher ramp-rates ~ 1-4 T/s.
 - With the exception of the *Nuclotron* magnets which are SC, all others are resistive magnets.
- In recent plans for upgrades of accelerator facilities are proposals for higher field rapid cycling SC magnets, in the range of 2T to 6T

2-6T Rapid Cycling Magnets

- New facility approved for GSI
- SIS100 ring cycling to 2T at 4T/s
 - Nuclotron Magnet
 - Iron Dominated
- SIS200 ring (200 Tm, original proposal) cycling to 4T at 1T/s
 - GSI-001 RHIC style Magnet
 - Coil Dominated
- SIS300 ring (300 Tm, current proposal, from physics) ramped up at 1T/s to 6T

Collaboration

BNL

- M. Anerella, G. Ganetis, A. Ghosh, P. Joshi,
 A. Marone, J. Muratore, J. Schmalzle, R.
 Soika, R. Thomas and P. Wanderer
- GSI
 - J. Kaugerts, G. Moritz
- Consultants
 - W. Hassenzahl, M. N. Wilson

Rapid Cycling Magnets operated at 4T/s

- Technical Challenge:
 - Minimize losses due to eddy currents
 - In Strand, Cable, Iron, Beam tube
 - Reduce losses due to SC magnetization and the iron
 - Avoid Ramp rate induced quenching found in some fusion magnets and investigated in detail during the development of magnets for the SSC High Energy Booster
 - Develop precise magnetic field measurement system for fast-changing magnetic fields

Arup Ghosh

Arup Ghosh

starting point RHIC wire and cable

Wire diameter (mm)	0.648	
Filament diameter	6	
Cu/Sc ratio	2.25	
Wire twist pitch (mm)	13	
Wire coating	None	
No. of strands in cable	30	
Cable width (mm)	9.73	
Cable mid-thickness	1.166	
Cable Keystone angle	1.2	
Cable lay pitch (mm)	74	

Arup Ghosh

For Cos q Magnet :Strand Design

- Minimize SC magnetization
 - Small filament diameter 2.5 μm
 - suppress "proximity-coupling by using Cu-2.5%Mn matrix.

Arup Ghosh

For Cos q Magnet :Strand Design

- Reduce eddy-current magnetization
 - High-resistive matrix, Cu-2.5%Mn
 - Small twist pitch, practical limit $5xd_w$
 - Jc > 2500 A/mm² at 5T

For RHIC wire $r_{et} = 1.8 \times 10^{-10} \mu\Omega$ -cm.

Use 4mm TP wire in cable

Jc =2780 A/mm² @ 5T

Arup Ghosh

Coupling in Rutherford cables

Losses in a Rutherford Cable

Cable coupling via R_c in transverse field

$$M_{tc} = \frac{1}{120} \frac{\dot{B}_t}{R_c} \frac{c}{b} p N(N-1)$$

Cable coupling via R_a in transverse field

$$M_{ta} = \frac{1}{6} \frac{\dot{B}_t}{R_a} p \frac{c}{b}$$

Factor of 3 if Ra is much lower at the edge than in st. section.

Cable coupling via R**a** in parallel field

$$M_{pa} = \frac{1}{8} \frac{\dot{B}_p}{R_a} p \frac{b}{c}$$

$$= \frac{M_{tc}}{M_{ta}} = \frac{R_a}{R_c} \left\{ \frac{N}{20} (N-1) \right\} \sim 50$$

Arup Ghosh

Losses in a Rutherford Cable

- In a typical cable $R_C \sim R_A$
- Resistive coating on strand increases both R_c and R_A
- Reduce *R_c* Loss
 - Resistive core
- Maintain R_A for adequate Current Sharing
- Coat strands with Sn-4%Ag to control R_A ~ 50-100 mW

Cabling experience (limited)

- Using a *hollow* mandrel at New England Wire Technology
 - Tape fed through the cable shaft
 - Main problems
 - Mandrel wear
 - Foil perforation of the stainless steel tape at the minor edge, depends on cable compaction, strand anneal state.
 - Difficult to splice tape.
 - Foil perforation not seen in 50 μm brass tape and by using 2 layers of 25μm SS-tape
- Recent cable made at LBL using a *slotted* mandrel shows that single layer SS-tape cored cable can be made without any perforations.
- Another promising candidate for foil is Cu-30%Ni. This is being evaluated for R_c

Perforations in the SS-ribbon at the cable minor edge

Arup Ghosh

Slotted mandrel at LBL

Arup Ghosh

Contact resistance measurement

R_A and R_C measured by the V-I method.

Typically current input in strand #1 and out at strand #16 Voltage measured between #1 and the other strands.

10-Stack sample prepared similar to a magnet coil

Arup Ghosh

Coil curing cycle

 R_A and R_C varies with pre-annealing and coil curing cycle

R_A and **R**_C Measurements

		Cable		Ra (µO)	Ra (µO)	
	Sn-Ag	Thickness,		After	6 months	Rc
Cable	Coating, µm	mm	Foil	Cabling	later	(mO)
GSI-003-A	0.66	1.138	25 µm SS	100	139	
GSI-003-B	0.66	1.180	25 µm SS	72	147	14
GSI-003-C	1.04	1.187	25 µm SS	28	80	
GSI-003-D	1.04	1.202	25 µm SS	18		12.5
GSI-003-E	1.04	1.173	2·25 µm SS	21.5	25	62.5
GSI-003-F	1.04	1.175	50 µm Brass	8.5	45	0.66
GSI-004-A	1.00	1.164	2∙25 µm SS	55		
GSI-004-B	1.00	1.174	2·25 µm SS	74		

Prototype Magnet used GSI-004

 $R_c \sim 60 \text{ m}\Omega, R_A=64 \mu\Omega$

Arup Ghosh

Prototype Cos q 4T Magnet

Arup Ghosh

GSI-001 Quench Performance

ARCHAMPS 22-24 March 2004

GSI Cable Insulation

- •Laser-cut holes (University of Jena, Germany)
- •Keeps strands in intimate contact with helium – better cooling.
- •Cable passed 1.1 kV turn to turn, in both the straight-section and the ends.

Loss contributions at 1T/s to 4T for GSI-001 Prototype Magnet

Uniform $R_A = R_A$ at edge

- Transverse crossover loss (R_C) = 0.2% 0.2%
- Transverse adjacent loss (R_A) = 5.2% 14.2%
- Parallel loss (Rc) = 0.2% 0.2%
- Filament coupling loss (Cu-matrix) = 35.9% 32.5%
- Hysteresis loss ($d_{fil} 6 \mu m$) = 58.5% 52.9%

These are based on $R_c = 60 \text{ m}\Omega$, $R_A = 64 \mu\Omega$, $\rho_{\text{et}} = 1.1 \times 10^{-10} \Omega$ -m

Measured losses

Calculated and measured gradients (rate dependent or eddy current terms)

Arup Ghosh

Workshop on Accelerator Magnet Superconductors ARCHAMPS 22-24 March 2004

Calculated and measured intercepts (hysteresis term)

Summary

- SC magnets cycling at 1-4T/s are quite feasible.
- Develop strand with smaller filament size 2.5-3.5 μm goal.
- Reduce strand loss by using Cu-0.5%Mn inter-filament matrix ρ_{et} ~ 1-2 x 10⁻⁸ $\Omega\text{-m}$
- Use "cored" cable with a single layer tape for dimensional control. Develop cabling expertise.
- Investigate the limit of higher R_A without compromising currentsharing.
- Magnet data show that the theory works pretty well
- Rate dependent loss show non-linear increase at high field
 - Change in R_A with increasing pressure ?
- Hysteresis losses show anomalous increase at high fields