EDISON activities on HTS and MgB₂

S. Zannella, Edison SpA

WAMS-2004 Workshop on Accelerator Magnet Superconductors Archamps, 22-24 March 2004

Edison today - the competitive position

Including 50% of Edipower sales starting from 2002

R&D Themes

- Hydrogen
- Fuel cells
- Sustenaible energy generation
- Distributed Generation
- Power Quality
- Superconductivity

Development of processes for innovative superconducting wires/bulks

- Y-123 coated conductors by thermal co-evaporation (partners: Europa Metalli Superconductors and CNR-I MEM)
- Bi-2212 electrodeposited tapes (CEA)
- MgB₂ bulks and wires (CNR-LENL)

Coated conductors by thermal coevaporation Joint team: EDISON, Europa Metalli Superconductors, CNR-IMEM.

Location: CNR-I MEM Laboratories (Parma, Italy).

Objective: Development of long Y-123 coated conductors with J_c > 200A/cm-width.

Work partially supported by CNR National Project (L. 95/95)

EMS

Thermal co-evaporation THEVA system for continuous production of coated conductors

Multilayer architecture of Coated Conductor (CC)

EMS

Textured tapes Ni e Ni-5 at.%W

	$In-plane \\ \Delta \phi$	$\begin{array}{c} Out \text{-} of \text{-} plane \\ \Delta \chi \end{array}$
NiW	7.7°	7.7°

EMS

(111) Pole figure

Supplier: thickness: width: Roughness R_a: I FW, Dresden (Germany) 80 μm 1 cm < 15 nm

CeO₂ Buffer Layer

EMS

DISON

CeO₂ Buffer layer

- Uniform 100 nm thick CeO₂ layer;
- crack free surface
- Sharp interfaces.

YBCO layer

Dense YBCO layer and smooth surface

Y-123 texture

(111) CeO₂ pole figure

(113) YBCO pole figure

EMS

SON

	FWHM Dc out-of-plane	FWHM Dj in-plane
NiW	8°	8°
CeO ₂	4.8°	6°
YBCO	5.8°	6°

20 cm long Y-123 CC: transport properties

EMS

Continuous deposition of Y-123 CC's

EMS

- Simple single-pass reel-to-reel system
- Tape speed: 0.2 0.4 m/h.

20 cm long CC: $J_c=1.8$ MA/cm²

Continuous deposition of CC's

1 meter long CC: $J_c=1-2$ MA/cm²

Next goal: 3 m long CC with $I_c > 200$ A/cm-width by 2004.

J_c vs B at low temperature

D. Uglietti, Département de Physique de la Matière Condensée, Université de Genève

EMS

WAMS-2004, Archamps, 22-24 March 2004

PEDISON

Bi-2212 electrodeposited tapes

- No-vacuum, fast and low-cost technique.
- Silver substrate without buffer layer
- Goal: scale-up of the electrochemical process, optimized on short samples, to a pilot plant for production of long Bi-2212 long tapes by a continuous electrochemical process
- Suitable also for Y-123 deposition (J_c=10 kA/cm² @ 77 K on untextured Ag substrates)

Sequential electrodepositions

Block diagram of pilot plant

Pilot plant Modular Electrodeposition Section

Heat treatments furnace

Electrodeposited Bi-2212 tapes

Best quality Lab sample

pilot plant tape

lower density

small size secondary phases

Electrical performances

100x2 cm long sample $J_c > 15$ kA/cm² @ 77 K cut from 20 m of electrodeposited tape Next goal: 10 m, 20 kA/cm² by 2004 (end of funded national project)

Critical current vs magnetic field

High density MgB₂ by Reactive Liquid Infiltration (RLI)

"in situ" process by the following reaction: Mg (liquid) + B(powders)

Temperature (750 °C - 1000 °C) Pressure (>1 atm)

 $MgB_2 (\rho > 0.9\rho_{th})$

Bulk MgB₂ manufacturing

The reaction is performed in a sealed stainless steel container and the final shape resembles the shape of the B preform.

Bulk MgB₂ Manufacts

Benefits of the RLI technology

- High density products with a low pressure process.
- Large and thick sample manufacturing.
- Valid for bulk and wires.

Magnetic critical current density

DISON

Trapped Magnetic Field

MgB₂ hollow disk , 1 mm thick (ϕ_{int}/ϕ_{ext} =25/46 mm)

Hollow wire manufacturing

- Cold working of a composite billet ,
- Assembling many billets for multiwire manufacturing
- Clamping the terminals
 - Thermal treatment

Optical micrographies of the cross sections of a 7-filament multiwire: a) precursor wire, b) annealed superconducting wire

MgB₂ Monofilamentary wire

J_{c} (B) of MgB₂ monofilamentary wire (A_{sc}= 0.1 mm², A_{tot}=1.23 mm²)

n-factor

The n-factor for different specimens are interpolated according to the following relation:

$$n(B,T) = n_o \exp(-aB/(1-T/T_c)^b)$$

parameters n_0 , α , β determined by fit of the exp. values

MgB ₂ Samples	n _o	a (1/T)	Ь
(A) - Bulk (#62)	103	0.30	1.33
(B) -Monofilament wire(#58)	130	0.38	1.00
(C) -7-filaments wire (#40A)	37	0.145	1.33

n-factor and flux flow activation energy

WAMS-2004, Archamps, 22-24 March 2004

IVIQB₂

➤MgB₂ is potentially interesting for applications at intermediate magnetic fields and intermediate temperatures (< 20 K).</p>

>The high potentiality of MgB_2 to reach rapidly a wide market is related to the low prospectic costs of raw materials and of the manufacturing process.

