Forschungszentrum Karlsruhe Technik und Umwelt

WAMS 2004

March 22-24, 2004, Archamps, France

Status and Perspectives for Technical Use of MgB₂ <u>Conductors</u>

Sonja Schlachter, Wilfried Goldacker, Bing Liu, Bernhard Obst, Heinrich Orschulko, Hans Reiner, and Silke Zimmer

March 23, 2004

Forschungszentrum Karlsruhe - ITP - Superconductors and Structure Materials

1

MgB₂: "Genie in a bottle" (R.J. Cava, 2001)

- $T_c = 39 \text{ K}$
- no weak-link behavior
- cheap

State of the Art for Powder-In-Tube (PIT) Conductors

• Two Routes:

- *Ex situ*:
 - Prereacted MgB₂-powder
 - Phase formation heat treatment not necessary, however: improvement of J_c when heat treated (grain connectivity)
- In situ:
 - Mixtures of Mg- and B-powders
 - Phase formation heat-treatment necessary
- Sheath Materials:
 - Fe, Cu, Monel, Ni, Nb, Ta, stainless steel and composites of these materials

Challenges for technical MgB₂ PIT conductors:

- Increase of $J_{c}(B,T)$
 - Ideal powder mixture $x \cdot Mg + 2 \cdot B$
 - Homogeneous microstructure
 - Good grain connectivity
 - Small grains
 - Improvement of $B_{irr}(T)$ Pinning centers / doping
 - Improvement of B_{c2}
 'Clean' → 'dirty' limit
- Improvement of thermal stability
 - Filament homogenization
 - Multifilament structures
 - Conductive sheath Material
- Improvement of mechanical stabilization

Improvement of $J_c(B,T)$:

Precursor: crystalline and amorphous boron powder

Improved Heat Treatment

Additional Defects by Neutron Irradiation

Improvement of J_c by mechanical alloying (Fischer et al., Preprint, IFW Dresden)

Mechanical alloying:

- Decrease of phaseformation temperature
- Small grains
- Problem: Low $T_{\rm c}$

<u>Improvement of $J_c(B)$ by nano SiC doping</u> (Dou *et al.*, Appl. Phys. Lett. 81 (2992) 3419, Wollongong)

Nano SiC-Doping:

- High density of dislocations
- ~10 nm inclusions of SiC and Mg₂Si inside the grains

FIG. 4. Transport J_c for SiC doped (sample 5) and undoped MgB₂ (sample 6) wires (the lines only serve for guiding the eyes). Inset shows T_c for these samples.

<u>Improvement of $J_c(B)$ with nano Mg powder</u> (Yamada *et al.* Appl. Phys. Lett. 84 (2004) 1728)

- Homogeneous phase formation (small Mg grains)
- Less oxygen ingot
- Small MgB₂ grains

FIG. 4. Scanning electron micrographs of the surfaces of the MgB₂ core removed from tapes heat treated at 600 °C for 1 h. (a) nanometer-size Mg + commercial B; (b) commercial Mg+ commercial B.

Comparison of the best $J_c(B)$ data of monofilament <u>MgB₂/Fe wires and tapes</u>

Improvement of thermal stability

- Improvement of thermal stability:
 - High conductive sheath materials
 - Multifilament structure

- Challenges
 - ⇒ Small reaction layer at filament sheath interface
 - ⇒ Reduction of phase formation temperature
 - \Rightarrow Mechanical alloying
 - \Rightarrow Doping
 - ⇒ MgB₂ phase with small grains for small filaments

Interface Filament - Sheath

Heat treatment: **905°C** →Thick reaction layer

Heat treatment: **640°C** → Thin reaction layer

Lower temperature favorable for thin filaments / thin wires

Wires with conductive sheath

Decrease of phase formation Temperature

Mechanical alloying

(Fischer et al., Preprint, IFW Dresden)

SiB₆ doping Cooley et al. cond-mat/0403130

Fig. 1. Inductive superconducting transitions at 1 mT after cooling in zero field for samples made by the binary reaction (plot a) and the ternary reaction (plot b). The data for sample T0 in plot b has been multiplied by 10 to resolve it from the temperature axis. Plot c compares saturation magnetization as a fraction of diamagnetism for both sets of samples as a function of reaction temperature corresponding to the parameters in Table I.

On the way from the "Genie in a bottle" to first conductors for applications:

Test of current limiting behavior

A small magnets

Current leads for "XRS" on "Astro-E2"

Test of current limiting behavior of MgB₂/Fe wire

Application of one 50 Hz AC current period

Sample shows limitation of current at 400 A (4.2 K self field)

Sample burns through for DC current ramp (1-5 Amps/sec) at half current value !

Unpublished: Jensen, Noe, Goldacker, Schlachter et al.

Cu/Cu monocore insulated solenoid, 1 T, 4.2 K

M.D. Sumption, M. Tomsic, M. Bhatia, Y. Hascieck, S.X. Dou, E. W. Collings

Presented at the ICMC Topical Conference Feb. 10-13 2004, Wollongong, Australia

Coil OD	29.2 mm	1 2 3 4 5
Coil ID	22 mm	1.1.1.1.1.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4
Coil Height	45 mm	
Conductor length	20 m of CTFF Cu/ MgB ₂ wire	
Conductor diameter	1 mm	
Number of turns	170	
Insulation type	Sol-gel ceramic	
Coil technology	W&R, Layer wound	
Coil constant	0.00367 Tesla/A	
Inductance	0.186 mH	
Coil I _c in self field	278A at 4.2K, 90 A at 20 K	
I_c of the sister sample	475A at 4.2K, 110 A at 20 K	
Coil J_c in self field	66190 A/cm ² at 4.2K, 21428 A/cm ² at 20 K	
J_c of the sister sample	113095 A/cm ² at 4.2K, 26190 A/cm ² at 20 K	
Axial field	1.02 Tesla at 4.2K and 0.33 Tesla at 20K	
Maximum field at the turns	1.05 Tesla at 4.2K and 0.3407 Tesla at 20 K	
NHMFL		Hyper Tech Research

Development of thin steel reinforced wires as current leads for XRS on Astro-E2

• Current leads to connect magnets and valves (T = 1.3 K) to the power supply (T = 17 K)

• Demands:

- High mechanical stability
- Low thermal conductance
- Current carrying capability 1-2 A @ 17 K
- Length of the wires: ~ 0.3 m
- Challenges:
 - Stainless steel reinforcement
 - Thin wires → small filament size → homogeneous microstructure

Development of thin steel reinforced wires as current leads for a NASA satellite

- Design of the wires
 - Precursor:
 - Fe-tube:
 - Stainless Steel tube:
 - 3 softening heat treatments at diff. diam.:
 - Final Heat treatment:
 - Wire diameter:

0.9 Mg + 2B^{amorphous} 10 x 1.5 mm 2.5 x 0.3 mm

600-620°C 3 640°C (old batch: 905°C) 310 μm (old batch: 400 μm)

 \sim 35 cm (old batch: 45 cm)

 ~ 30 cm (old batch: 40 cm)

- <u>Critical-current test for all wires:</u>
 - wire length:
 - Voltage contact dist.:
 - Temperature:
 - Magnetic Field:
 - Maximum test current: $I_{max} = 12 \text{ A} \text{ (old batch: 15 A)}$
 - \Rightarrow Less than 10 % of the wires failed the test

4.2 K

self field

21

$I_c(B,T)$ of MgB₂/Fe/SS current lead wires $\emptyset = 310 \,\mu m$

The current of 2 A required for the satellite application can be transferred through the current leads up to $T \sim 34$ K in self field.

<u>Mechanical properties of steel reinforced</u> <u>MgB₂/Fe/SS current lead wires</u>

Tolerable stress and strain (/_c / I_c ($\epsilon = 0$) ≥ 1):

- MgB₂/Fe/SS (\emptyset = 400 µm, T = **905°C**):
 - Tolerable strain: ~ 0.3 %
 - Tolerable stress: ~ 320 MPa
- MgB₂/Fe/SS (Ø = 310 μm , T = 640°C) :
 - Tolerable strain: ~ 0.8 %
 - Tolerable stress: ~ 800 MPa
- ⇒ Improved mechanical performance for wires with low-temperature heat treatment, because stainless steel sheath is not softened.

Current Leads for XRS on ASTRO-E2

Picture: NASA

<u>Outlook</u>

- MgB₂
 - Cheap material
 - High T_c (compared to LTS)
 - No weak-link behavior
 - Critical currents and critical fields can compete with NbTi at 4.2 K
 - High potential for higher temperatures
- Bottlenecks and Challenges
 - Thermal stability \rightarrow small filaments have to be realized
 - Mechanical stability
 - Superconducting joints
 - Long lengths fabrication process

Influence of filament diameter

• Heat treatment **905**°C:

- With decreasing wire diameter (above 250 μ m) J_c increases
 - Influence of filament precompression ?
- Below 250 µm filament diameter filament homogeneity becomes more and more important
- Heat treatment **640**°C:
 - J_c is much higher than for wires heat treated at 905°C, even at smaller filament diameters.

Improvement of $J_{c}(B,T)$:

Precursor: crystalline and amorphous boron powder

