PART I :

- Large Scale HTS-Applications
- System Aspects, Design & Integration

PART II:

- Technical HTS-conductors and HTS-windings
- > Is HTS Technology mature for Large Scale High Field Magnets ?

J. Rieger Siemens Corporate Technology

Erlangen, Germany

Power & Sensor Systems Power Components & Superconductivity

The second

Power & Sensor Systems Power Components & Superconductivity

Large Scale HTS-Applications MRI Magnets

LTS Technology

- With first laboratory scale magnets in early 1980's Siemens co-developed a multi-million dollar business
- Siemens Medical Solutions and Oxford Magnetic Technologies manufacture app. 1200 MRI-Magnets/yr.
- LTS MRI Magnet Systems from 0.5 T up to 3.0 T
- > World market for MRI has a volume of \approx 3 Mrd \$/yr.

HTS Technology

- > OMT OR10 The world's first MRI-magnet with HTS-magnet coils
- Cryofree conduction cooling with a GM-type refrigerator for T_{op}≈20K
- > DC-pancake windings for a low field open MRI-system
- C/P ratio is essential to beat conventional electromagnets or permanent magnets

Large Scale HTS-Applications HTS-Transformer

Railway traction or distribution isle grid

- > Weight = 50% Volume = 50% Efficiency = $92 \rightarrow 99\%$
- > Oil-free = environmental benefit, no fire hazard

Technical Characteristics

- P = 1 MVA, f = 50 Hz, U = 25 kV, single-phase
- \blacktriangleright I_{US} = 360 A, I_{OS} = 40 A , B_{HTS} < 500 mT, \approx 7 km Bi-Tape
- Forced flow subcooled LN₂ (dielectric reasons) T_{op}=67K

Operational experience

- short circuit, no load experiments, frequency variation, load variations, asymmetric operation
- > design-tools and loss-models predict measurement results
- > Successful testing of operation with a converter (harmonics)
- Transformer executed a load characteristic experiment with a 1 hour drive cycle "Wunstorf-Lehrte"
- > Proven ability to drive ONE hour without cryocooler

Development challenges

- Iow AC-loss conductor twisted filaments, high j_e
- reliable compact cryogenic system n*100W
- > FRP Cryostat with long vacuum stability for a warm iron core

Power & Sensor Systems Power Components & Superconductivity

Power & Sensor Systems Power Components & Superconductivity

Large Scale HTS-Applications HTS-Motor / -Generator

First HTS-Industrial Motor (400kW) in Europe (2001) (BMBF funding)

operation !!! > 3 yrs. continuous testing in a rough factory environment

- test with power converter passed in 4/02
- 4-pole, n = 1500 rpm, f = 50 Hz, x =

"invisible" cooling system

Test-Bed for scale-up of s _____ components

compactness

efficiency

in

" stability

4 MVA HTS-Generator (2002-2005) (BMBF funding)

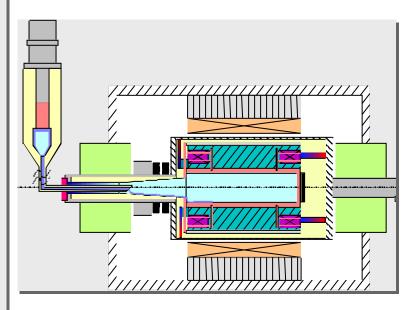
- Development for application on-board of ships
- Rotor with HTS-windings and brushless excitation
- Stator with Air-core winding from Cu-Litz \geq
- U = 6,6 kV, 2-poles, f = 60 Hz, n = 3600
- Full-Load Testing with a grid in the new Siemens Systemprüfhaus, Nürnberg
- Testing with a gasturbine in discussion

A.

Power & Sensor Systems Power Components & Superconductivity

System Aspects, Design & Integration Key Technologies for HTS-applications

> HTS conductors


- physical application know-how : T_{op} , I_{op} , B_{op}
- Winding Know-How Design & Manufacturing
 - mechanical, chemical & thermal tolerances
 - handling, contact & joining technology
 - qualitiy control

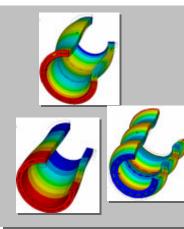
Electrotechnical system integration

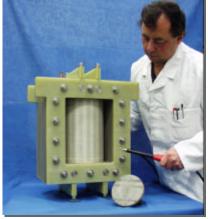
- design and construction rules & tools
- operation : converter-machine model
- protection concept

Cryo and vacuum technology (rotating)

- closed cycle cooling system
- possibility to exchange primary cooler
- heat transfer by self-controlled thermosiphon

System Aspects, Design & Integration Development Process

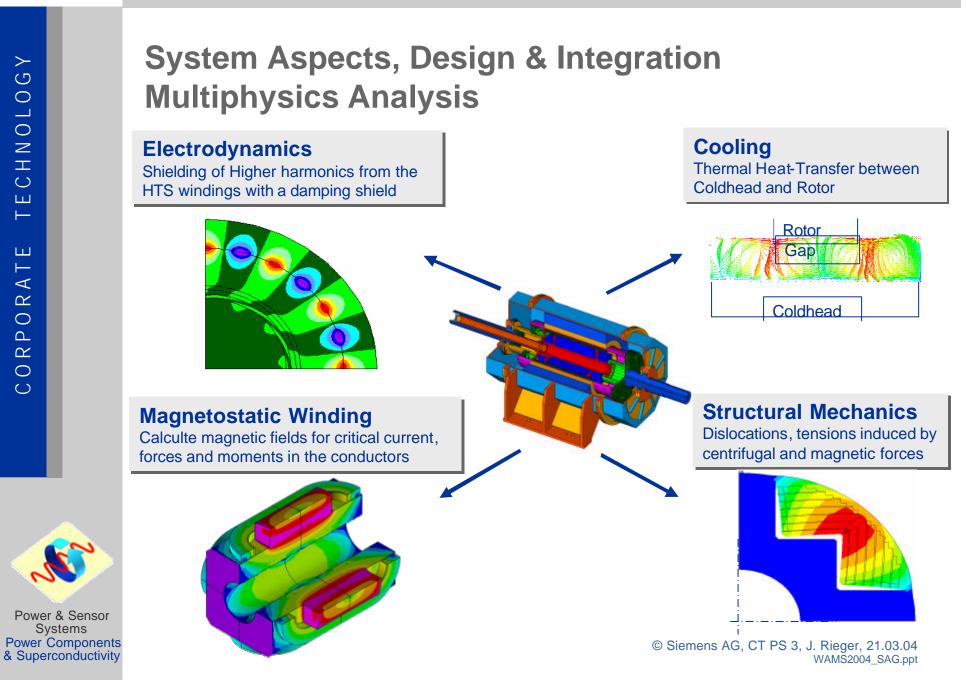

Material, Cryog	Production of powe engineering equipme	System integration
Development of HTS-Material and	Design, systemengineering, and	Integration in systems, test of
Cryo-Equipment in cooperation	construction of components	systems and development of a
with external partners	and power engineering equipment	market entry with business units


Technical Conductors

Design of windings

Systemengineering Multiphysics-Simulation

HTS-Choke Coil



≻ 9

TECHNOLO

CORPORATE

Systems

A.

Power & Sensor Systems Power Components & Superconductivity

System Aspects, Design & Integration Cryogenics

... high thermal heat transfer capacity Condensing Area Liquid Condensate Connecting Tube Evaporating Fluid Heating

Thermosiphons comprise ...

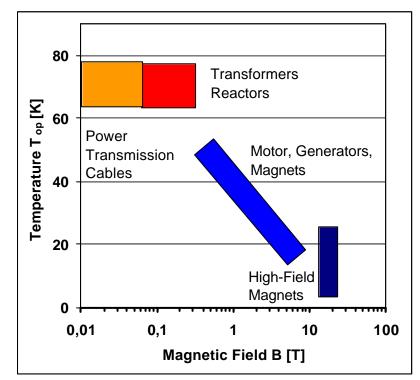
... closed-cycle cooling system

... Self-Control

25-30K (Neon): HTS MRI Magnet (cooling testbed)

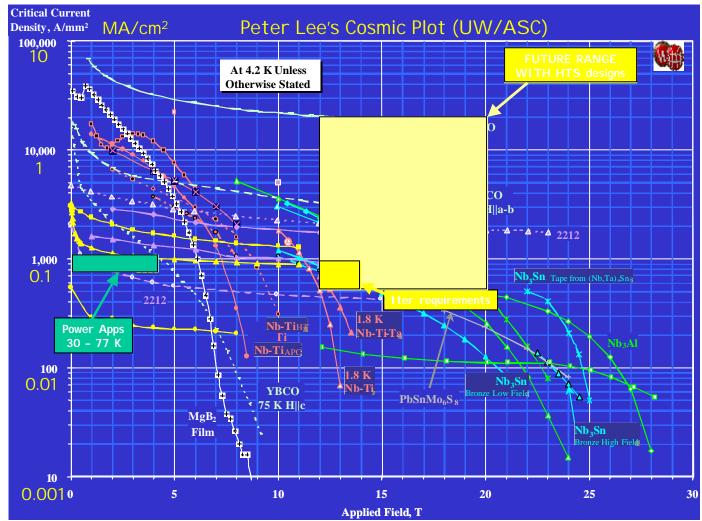
> 25-30K (Neon): HTS Motor

4.2K (Helium): Superc. Switch


A.

Power & Sensor Systems Power Components & Superconductivity

Technical HTS-Conductors & HTS-Windings Requirements


Requirements for flexible HTS Conductor

- > availability in km-batches
- mechanical properties
 - mechanically reinforced
- > high current capacity 0.1 5 kA
 - large superconductor content
- Iow Cost 10\$/kAm (DoE)
 - high engineering current density je
 - high critical current density j_c
- > low AC-losses (<0.45mW/Am /77K)</p>
 - short twist
 - ➤ thin filaments
 - High transverse resistivity

Operational parameters for Power engineering equipment

Technical HTS-Conductors & HTS-Windings Application Ranges - Material Selection

لح 10

0 T 0

 \geq

Т

 \bigcirc

Ш

⊢-

Ш

RA

 \bigcirc

Δ

0 R

 \bigcirc

Power & Sensor Systems Power Components & Superconductivity

Technical HTS-Conductors & HTS-Windings HTS-Tape Conductor Properties

Parameter	Bi-2223/Ag-Tape	YBCO-CC-Tape	YBCO-CC-Tape outlook
Туре	AgMg / Ag	IBAD / PLD	CSD
Available length	500-1500 m	10 m	>100 m
Width x thickness [mm ²] (typ.)	4 x 0.25	4 x 0.1	10 x 0.15
SC fill factor λ	25-35%	1-3 %	1-3 %
Critical current I _c (77K,0T)	80140 A	120 A	+
Current Density j _e (77,sf)	100 A/mm ²	300 A/mm ²	125 A/mm ²
Current Density j _e (25,4T perp) Stabilized, insulated	100 A/mm ²	340 A/mm ²	220 A/mm ²
Current per width	200 A/cm	> 200 A/cm	+
I _c (66K)/ I _c (77K)	1.7	2.1	
Ι _c (0.1T) / Ι _c (0T)	0.80	0.55	
$I_{c}(0.1_{\perp})/I_{c}(0T)$	0.31	0.47	
AC-loss 0.1T _{II} , 50Hz	0.3-1.0 mW/Am	<0.003 mW/Am	< 0.003 mW/Am
AC-loss 0.1T _⊥ , 50Hz	15 mW/Am	15 mW/Am	45 mW/Am
Critical bending radius	50 mm	< 15 mm	< 25 mm
Critical Tension (axial)	100150 MPa	400 MPa	150
Handling	Robust	Sensitive	+
Insulation	wrapped, extruded	Not available	+
Stability, Normal resistance	High, < 10 mΩ/m	Low, > 1 Ω/m	+

Power & Sensor Systems Power Components & Superconductivity

Technical HTS-Conductors & HTS-Windings Which critical current to use ?

Which critical current to use ?

- > High critical current I_c keeps winding effort low (=cost) and keeps inductance low
- High engineering current densities j_e for compact windings (power density) in motors, generators, transformers, magnets, …
- > High current per width I_c/w is required esp. in transmission lines (power cables)

From the I_c of the tape to the attainable current density J_w in a winding (M.Oomen)

- > Critical current (density) at 77K in self field $I_{c,sf}$
- > Critical current density at the operating point (Temperature, cooling technology, magnetic field) j_e(T_{op},B_{op})
- > Critical current density of a stabilised tape (device depend requirements)
- > Critical current density of an insulated tape (varnish, extruded, wrapped, process temperature ?)
- \succ attainable current density in a winding (fill factor, cooling design, winding type) J_w

Final Results :	Bi2223	YBCO (PLD)	YBCO (MOD/CSD)	
j _e 77K, sf	100 A/mm ²	300 A/mm ²	125 A/mm ²	bare tape
J_{w} 77 K, 0.1 T $_{\parallel}$	35 A/mm ²	42A/mm ²	25 A/mm ²	winding
J _w 25 K, 4 T _^	60 A/mm ²	204 A/mm ²	130 A/mm ²	winding

YBCO-tapes are comparable/better than Bi-2223-tapes for high power density windings

 \succ

Technical HTS-Conductors & HTS-Windings AC-Current and High-current Applications

HTS Tapes for AC-applications - Twisted Tapes

Magnetisation Loss : $P_{mag}/I_c = p_{co} B^3 / (B_{co}^3 + B_{co} B^2) f / 50Hz + q_{co} (B / B_{co})^2 (f / 50Hz)^2$

- > parallel field loss can be decreased by increasing w/lp
- > perpendicular field loss is independent of w/l_p tape width determines AC-loss
- > minimum parallel field loss (0.3 mW/Am) = hysteresis loss of filaments
- > width / Twist- ratio > 0.3 causes degradation
- ➤ twist length typical : 8...14 mm
- engineering critical current density j_e = 50-65 A/mm²
- > Resistive matrix Ag-Pd possible Barrier concept technical not mature

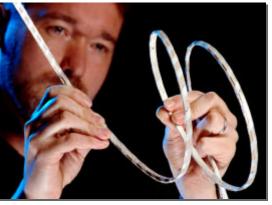
High-current conductors - Roebel bar conductor

- > Critical current assembled conductors : $I_{c,design} = \Sigma I_{c,tape} = 673 \text{ A}, I_{c,cable} = 400 \text{ A} (77 \text{ K})$
- Self-field induced I_c reduction to 60...70% of nominal I_{c,design}
- > Self-field model for I_c reduction : increasing # of tapes and increasing critical current $I_{c,tape}$
- > BUT : cabled conductors are designed for high field windings self field is uncritical
- \succ NO affection of tape properties (n-value, $I_{c})$ by cabling process
- AC-loss behaves as for a monoblock
- > scaling of transport AC-losses for different conductors with Norris Ellipse model

The second

Power & Sensor Systems Power Components & Superconductivity

Technical HTS-Conductors & HTS-Windings High Current Assemble


Roebel bar conductor

- modular concept for high-current conductors
- transposed strands for low ac-loss
- insulated strands thin coated plastics
- flexibility for coil winding
- Iong-lengths production semiautomatic
- developed for HTS transformers
- presently not applicable for YBCO

Laboratory Cabling Facility LARA

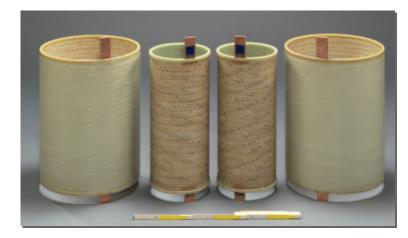
Flexible conductor

13-strand conductor, length=160m

\succ C \bigcirc \bigcirc \geq I \bigcirc LЦ ⊢ш ⊢- \triangleleft \simeq \bigcirc \simeq \bigcirc \bigcirc

Power & Sensor Systems Power Components & Superconductivity

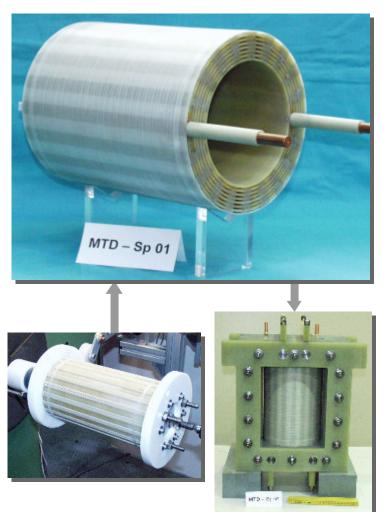
Technical HTS-Conductors & HTS-Windings Solenoid Layer Windings – Traction transformer


Primary windings

- High voltage solenoid windings
- Bi2223/Ag-conductor, high-strength sheath
- thermoplastic coated insulation
- 9 Discs of solenoid layer windings with inter-coil connection
- > 19 layer per disc, 2016 turns in total
- ▶ I_N = 40 A
- > AC-operation, $T_{op} = 67 \text{ K}$

Secondary windings

- Low voltage windings with high amperage
- 13-strand Bi2223/Ag-Roebel conductor
- thermoplastic coated insulation
- Internal or external (!) FRP-mandrel
- 1 layer with 56 turns
- $> I_{N} = 360 \text{ A}$
- > AC-operation, $T_{op} = 67 \text{ K}$


Technical HTS-Conductors & HTS-Windings Roebel windings – HTS-Choke coil

High amperage windings

for power engineering equipment with current 100...1000 A require assembled conductors

HTS-Choke coil

- Cable 13-strand fully-transposed, 105 m length, 13 x 0.9mm²
- > I_{c,sf,Top=66K}) = 443 A, I_{c,sf,77K} = 247A
- Elementary conductor 1362 m high-strength Bi-2223 tape
- winding with 6 layers and 192 turns
- Internal cooling channels for LN₂ bath cooling
- > Dry winding and vacuum resin impregnation
- P = 208 kW (reactive)
 - L = 5.5 mH, f = 50 Hz,
- > Axial Field at $I_c(T_{op})/50Hz = 585mT$

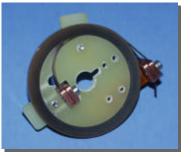
© Siemens AG, CT PS 3, J. Rieger, 21.03.04 WAMS2004_SAG.ppt

A.

A.

Power & Sensor Systems Power Components & Superconductivity

Technical HTS-Conductors & HTS-Windings Racetrack Windings – Motor, Generator


HTS-Racetrack winding

- Bi2223/Ag-conductor, single-strand,
- > thermoplastic coated insulation, Cu-mandrel
- Wet-winding with expoxy resin
- \geq ≈ 100 windings
- > conduction cooling, $T_{op} = 20...30K$
- DC-current operation with I = 40 A

HTS-Experimental windings

- commercial winding machine adjusted for winding of HTS tapes
- > measurement and control of winding tension
- flexible adjustment for any kind of coil
- > HTS tape handling, guidance, co-winding
- dry-winding, wet winding and vacuum impregnation

1st pancake winding from 10m YBCO CC

Multi-layer solenoid from Bi2223-tape

Technical HTS-Conductors & HTS-Windings Present Status

From the viewpoint of a magnet or power equipment manufacturer HTS-Winding Technology (for Bi-tapes) is developed and proofed :

- > applications in 4 K, 20...30 K, 60...80K temperature ranges
- winding adapted to flat tapes : 3...5 mm x 0.1...0.3 mm and assembled conductors (2n+1)-strand with typ. 7...10 mm x 1...4 mm
- > wet winding or dry winding with vacuum resin impregnation (all React & Wind)
- Iow post-processing temperatures (insulation & tape)
- splicing and joining technology for elementary tapes (Bi not CC)
- > bath cooling or conduction cooling via eg. Mandrel
- intrinsic stabilization in Bi/Ag-tapes or co-winding with metal-tape

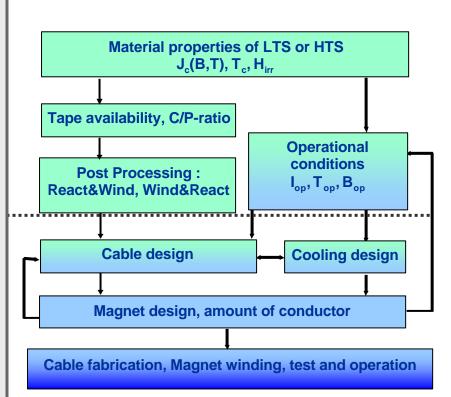
Further developments should preferrably allow a FORM-Fit replacement of the conductor by YBCO CC with a high engineering current density j_e Whishes for the future :

no anisotropy, round wires, long batches, low C/P, tiny filaments,

A Constant

Power & Sensor Systems Power Components & Superconductivity

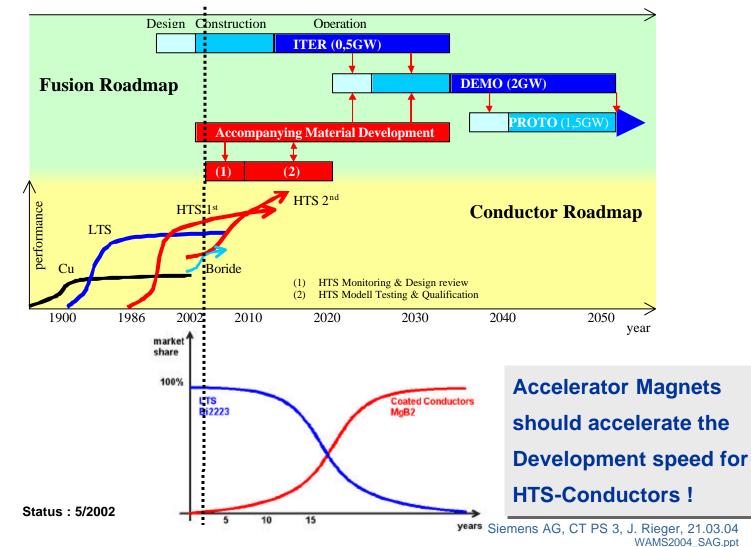
Is HTS Technology mature for Large Scale High Field (LSHF) Magnets ? - Design-Process


Replacement Approach Substitute 1:1 LTS-Technology

- LTS : CICC, Compaction of jacket onto cable, W&R, LHe-coolant, T_{op} = 4.2K, B_{op} ≥ 13T
- > Performance as good as LTS
- Competitive C/P ratio drives replacement
- Improve performance and reduce process cost of HTS
- new mechanical concepts

Enabling Approach

Exploit advantages of HTS-conductor by Re-Design of Magnets


- > performance under high fields B>20T
- enhanced T_{op} = 20...30 K enables cryo-free cooling and lowers cost of operation
- > higher temperature margin ΔT enhanced stability
- new mechanical concepts

Is HTS Technology mature for Large Scale High Field (LSHF) Magnets ?

Parameter	LTS Magnet	HTS Magnet
Conductor	Nb3Sn CCIC	Assembled Conductors of Bi/Ag-Tapes or YBCO CC
Current density $\mathbf{j}_{\mathbf{e}}$	Reference	Multiple - no strain dependence below \mathbf{e}_{c}
C/P ratio	Reference	Lower (YBCO-CSD)
Insulation	External wound prepregs	Bi : available YBCO-CC : tbd
Magnet construction	Self-supporting	Supporting plate/mandrel
Magnet fabrication	Wind & React (high risk)	React & Wind (minized risk)
Stability	Low Stability Internal Cu and Cryogenic stabilization	Intrinsic (Ag), Impregnation (Pb) or Add-on conductor (Cu) Bi : high stability YBCO : low stability
Stability margin DT	mK Range	10 K Range = reduced quench risk
Cooling	Direct internal He-Cooling	Indirect via separate (He-)channel, conduction cooling
Operation	Pulsed mode possible	Small field change rates dB/dt
Magnetic field B	Limited B	Very small dj _c /dB for B>>13T
Investment	High	Medium (2 nd Gen CC)
Cost of operation	High (4K)	Medium (20K)
R&D needs	Small	Concept for 20K Magnets, C/P-improvement, low cost process (CSD)
Status	Close to Saturation	Development with potential

Is HTS Technology mature for Large Scale High Field (LSHF) Magnets ? - Roadmap Matching ?

Summary

Status

- > HTS is economically not competitive at the moment to substitute (1:1) Nb₃Sn in LSHF-magnets
- > HTS wire meet most je and mechanical requirements, AC-loss dependent on field ramp rate requirements
- > A Redesign of the magnets (T»20..30K, high B-field) will fully exploit the advantages of HTS
- > Winding technology for Bi/Ag-Tapes is well developed and 1st transfers for form-fit YBCO CC are successful
- > Modelling tools for the design of HTS-windings regard the specific field and temperature $j_c(B,T)$, n(B,T) etc.

Outlook

- Develop new Magnet concepts for the use of HTS in LSHF applications including concepts for mechanical forces, cooling, thermal and electrical stabilization.
- Monitor and drive further progress in the development of secondary key components (Cryocoolers, Cryostats, sealings, bearings etc.)

> Monitor and drive the HTS-material development constantly

Bi2212	low cost production process, fine filamentary high current wires
Bi2223	lower process cost by production ramp up, performance increase ${\rm j}_{\rm e},$ low AC-loss
YBCO	long length production with low cost process, stabilization, joining, insulation
MgB ₂	(4.2K application ?) current density, preparation progress, multifilamentary wires

