ShapeMetal Innovation B.V.

The producer of Nb₃Sn PIT conductors

- Het Lentfert 31
 7547 SN Enschede
 The Netherlands
- Tel. +31 (0)53 434 07 04
 Fax. +31 (0)53 435 86 42
 Email: jlsmi@worldonline.nl

SMI activities

and

plans on PIT Nb₃Sn

J.H. Lindenhovius H. Krauth

SMI, Enschede EAS, Hanau

Outline

• 1974 - 1990 ECN (history)

• 1992 - 2004 SMI (activities)

• 2004 - SMI - EAS (plans)

1974 – 1990

Development at Energy Research Foundation ECN in Petten (NL)

• With pilot productions for Fusion and Accelerators

European Fusion Program

Cables for 12T coils of SULTAN-2 facility

(Coils are now part of ENEA test facility)

'85 - '86 PIT strand with 36 filaments							
(12,2T; 4.2K)							
Dia	Cu	OD Nb	Ic	N-value	Jc non-Cu	Weight	
(mm)	(%)	(µm)	(A)		(A/mm^2)	(kg)	
1.0	58	108	350		1060	167	

Magnet development program of CERN

1 m Nb₃Sn model magnet ('87) (ELIN made single pole)

⁶⁸⁷ PIT strand with 192 filaments for B-cable							
(12T; 4.2K)							
Dia	Cu	OD Nb	Ic	N-value	Jc non-Cu	Weight	
(mm)	(%)	(µm)	(A)		(A/mm^2)	(kg)	
0.9	55	44	544	55	1898	47	

'87 B-cable (Keystoned Rutherford)							
(12T; 4.2K)							
Dimensions	# strands	Ic	Jc non-Cu	Length			
(mm)		(kA)	(A/mm^2)	(m)			
1.45/1.77 x 16.4	36	18,8	1520	240			

Magnet development program of CERN in co-operation with UT

11,5T Nb₃Sn 1 m model magnet ('90) (Keystoned Rutherford Cables made by LBL Berkeley)

'90 PIT strand with 192 filaments for A-cable							
(12T; 4.2K)							
Dia	Cu	OD Nb	Ic	N-value	Jc non-Cu	Weight	
(mm)	(%)	(µm)	(A)		(A/mm^2)	(kg)	
1,25	53	62	657	40	1139	53	

'88-'89 PIT strand with 192 filaments for B-cable							
			(12T; 4.2K)				
Dia	Cu	OD Nb	Ic	N-value	Jc non-Cu	Weight	
(mm)	(%)	(um)	(A)		(A/mm^2)	(kg)	
1.0	53	49	541	40	1465	57	

Activities of ShapeMetal Innovation SMI in Enschede (NL)

• 1992 – 1995

Main activity:

Development and Production of SMA applications • 1995 – 2004

Development of PIT conductors

With small production for Fusion, Accelerators and Laboratory Magnets

Development projects on PIT (1995 – 2004)

- Fine filament conductor
- High field conductor
- Stress strain behaviour
- Cabling
- Extrusion

Fine filament conductor

Binary conductor

- 504 filaments
- Matrix OFHC copper ca. 52%
- Diameter 0.9 mm; OD Nb 27,5 μm
- RRR value > 100
- Jc non-Cu: 1350 A/mm² at 12T
- N-value ca. 40 at 12T

In production for UT dipole magnet

Advanced Iter conductor ???

High field conductor

Tertiary conductor

- 192 filaments
- Matrix OFHC copper 45 53%
- Diameter 1.0 mm; OD Nb 50 µm
- RRR value : >100
- Jc non-Cu : max. 2450 at 12T max. 700 at 18T
- N-values :> 40 at 12 Tesla

In regular production for accelerators

Stress – strain behaviour

Billet 165 - partly reinforced - 0.6 mm dia.

The Applied Superconductivity Center THE UNIVERSITY WISCONSIN MADISON

Procedure

Mitsubishi

transport

Conclusions

Data

VAC

IGC

SMI

Experimental Procedure

Longitudinal Cross-Section

Stainless steel clamp, bent to 0.5% of wire radius

Neutral Axis

- 1 cm-long samples were mounted in stainless steel clamps with a radius of 200x the radius of the wire.
- Longitudinal face hot-mounted, ground, and polished to 0.05 μm
- Samples etched in 37% HNO₃, 13% HF for ~10 sec. to reveal crack location
- Images acquired on field-emission scanning electron microscope and optical microscope
- All wires received manufacturer recommended heat treatment

Mitsubishi wire in clamp

Applied Superconductivity Conter

THE UNIVERSITY

Motivation Procedure Data Mitsubishi VAC IGC SMI transport Conclusions

SMI Powder-in-tube Billet 34(Ta)

0.5% strain

Transverse Crosssection

•No cracking seen at 0.5% strain

The Applied Superconductivity Conter

THE UNIVERSITY

Motivation Procedure Data Mitsubishi VAC IGC SMI transport Conclusions

SMI Powder-in-tube Billet 34(Ta)

0.625% strain

•Transfilamentary cracking present at 0.625%

•Ductile Nb arrests crack propagation

Cabling

Keystoned Rutherford cable (LBL Berkeley)

Extrusion

- Extrusion succesful of
 - Small billets (since longer times)
 - Middle sized billets (recently)

• Extrusion of large billets expected soon

SMI's activities today

• Fermilab

small quantities; 1.0 mm dia tertiary conductor (192 fil) Ic > 700A @ 12T; 4.2K filament dia < 50 μm

• CERN – UT (Nb₃Sn dipool)

last small part (< $\frac{1}{4}$); 0.9 mm dia binary conductor (504 fil) Cu 45 - 60% Ic \geq 460 A @ 10,8T; 4.2K N-value \geq 40 at 10,8T; 4.2K • Iter qualification

100 kg; 0.81 mm dia. binary conductor (1st test billet) Ic < 280A @ 12T;4.2K hysterese loss \leq 500 kJm³ (± 3T)

• Laboratory and other magnets

small quantities; 0.5 – 1.2 mm dia binary/tertiary conductors (36–192 fil) reinforced matrix on request with high Ic values

SMI's plans on PIT Nb₃Sn

- Make co-operation with EAS succesful
- Qualify for:
 - Fusion (ITER)
 - Accelerator projects (e.g. CARE/NED)
 - NMR
- Start large scale production

Next European Dipole (NED)

Strand specification (Nb₃Sn)

- diameter
- Cu
- Jc non-Cu
- filament diameter
- piece length min.
- tot. length

1,25 mm 55 % (Cu : SC = 1,25 : 1) 1500 A/mm² @ 15T; 4.2K < 50 microns 1 km (pref. 3 km) 16 km (1 + 5 + 10 km)

Cable specification

- type
- number of strands

Keystoned Rutherford 40 (max.)

Development for NED

With regard to following topics

- Powder composition
- Cross section
 - (in relation with cabling properties)
- Heat treatment
- Barrier
- Extrusion

What are the Limits in Present High J_c Nb₃Sn Wire Designs?

Complete HEP program includes complementary SBIR/STTR work

- FY 2001
 - *Nb₃Al--\$1,200K

*PIT Nb₃Sn--\$1,100K

*MJR/Int. Sn Nb₃Sn--\$400K (+\$500K direct HEP)

• FY2002

*PIT Nb₃Sn--\$1,500K *MJR/Int. Sn Nb₃Sn--\$700K(+\$440K direct HEP) MJR Nb₃Al--\$60K direct HEP *SC Processing--\$1,000K

> ASC sept 2002 Ron Scanlan Berkeley Lab