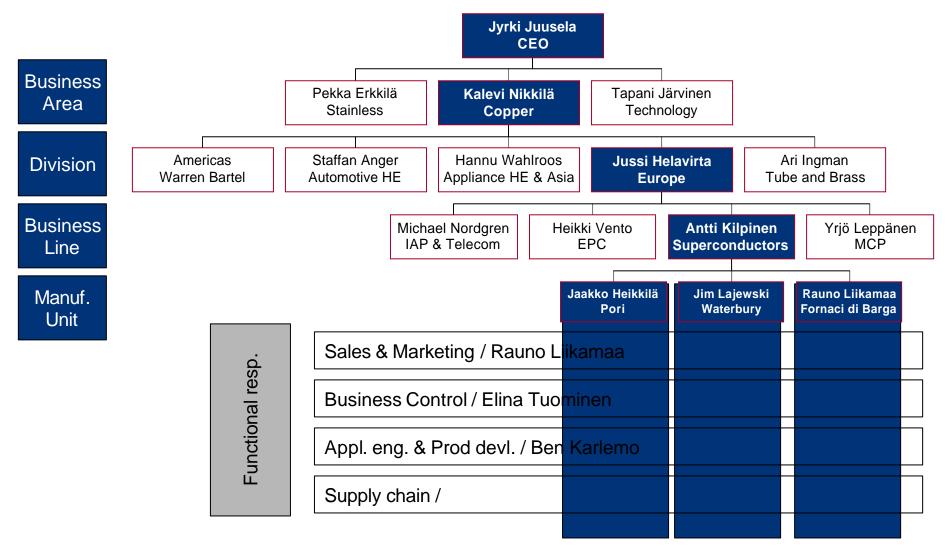


Outokumpu Activities and Plans on LTS and HTS Materials

Rauno Liikamaa 23.03.2004


stainless | copper | technology

Contents

- The Superconductors Buissness Line in Outokumpu
- Nb₃Sn Projects
- HTS Activities

Organization

Superconductor Business: Products and Applications

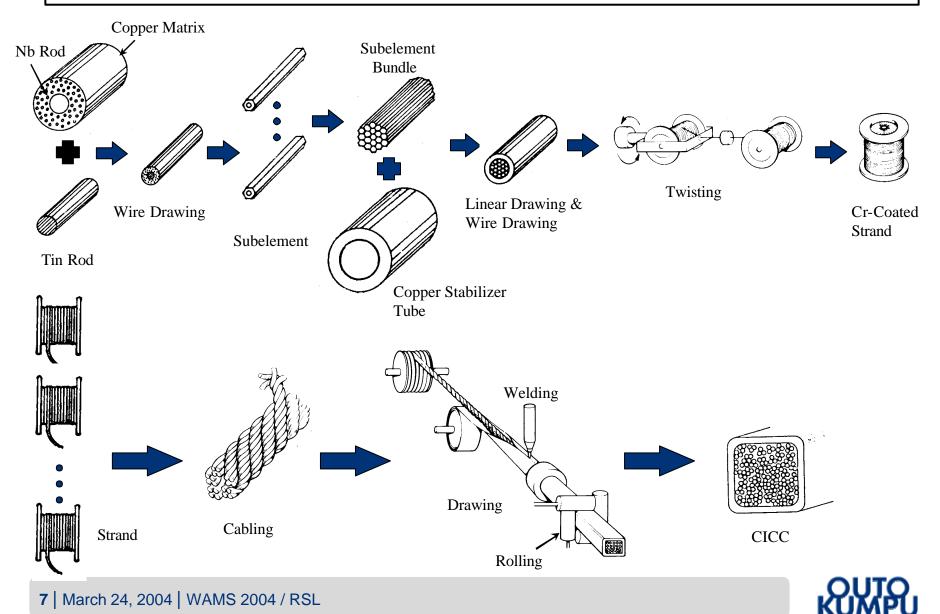
• NbTi

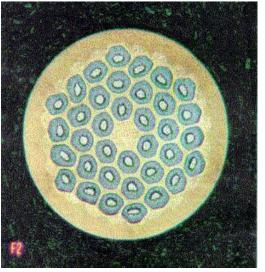
- Monolithic wires
- Wire in Channel
- Cables
- Nb₃Sn
 - Internal Tin
 - Bronze

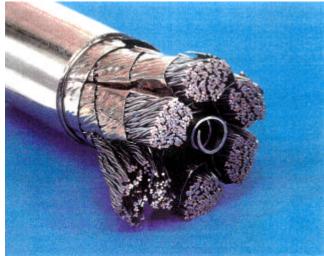
- Applications
 - MRI
 - NMR
 - Specials
 - Projects
 - LHC
 - CMS
 - ATLAS
 - Wendelstein 7-X
 - Kstar
 - Others

Superconductor Business: Essential Assets

- In House High Purity Oxygen Free Copper
 - Billets, cakes, Rods
- Complete set of Machinery for Copper Cold and Hot Working
 - Several Hot Extruders
 - Hydrostatic Extruder
 - Rodex (Continuous Extrusion, Cu and Al)
 - Drawing (e.g. Europe's Longest Bench)
 - Profile Manufacturing
- Availability of Outokumpu Intellectual Property




Nb₃Sn Projects


stainless | copper | technology

Fabrication Process of Internal-Tin Nb₃Sn CICC

Nb₃Sn for the TF Model Coil

• Fornaci di Barga

- Diameter (mm) 0.810 ± 0.003 Twist pitch (mm) =10Twist direction RHH Cross-section (mm²) 0.5153 Cu/nonCuratio 1.50 ± 0.05 NonCu cross-section (mm²) 0.2061 Cr thickness (µm) 2.0 +0.5/-0
- About 4 tonnes of strand manufactured mid 90's
- About 1 km of conductor manufactured
- Successfully tested at FZK (80 kA)

Projects in High Energy Physics Area:

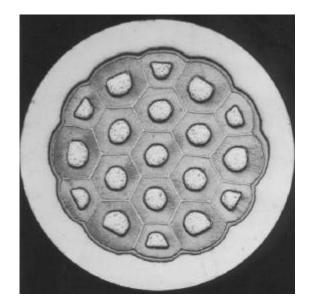
- Conductor Development Program for High Energy Physics, Since 2002
 - Supported by U.S. Department of Energy Subcontract through Lawrence Berkeley National Laboratory
 - Highly focused on Nb3Sn (internal-tin).
- SBIR Subcontracts from small companies and national labs

In other areas:

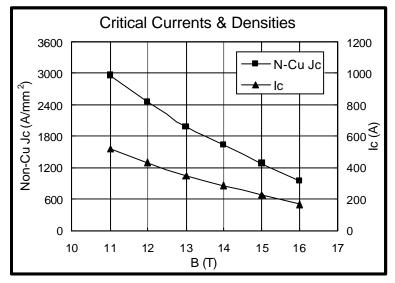
- NHMFL (National High Magnetic Field Laboratory), Since 2002
 - 450 km of internal-tin strand for 45T-Hybrid magnet.
 - Delivery to be completed by the end of March.
- High Field DC laboratory magnets
 - High current, high strength Nb3Sn has been supplied to small magnet manufacturers.

Projects in the Fusion area

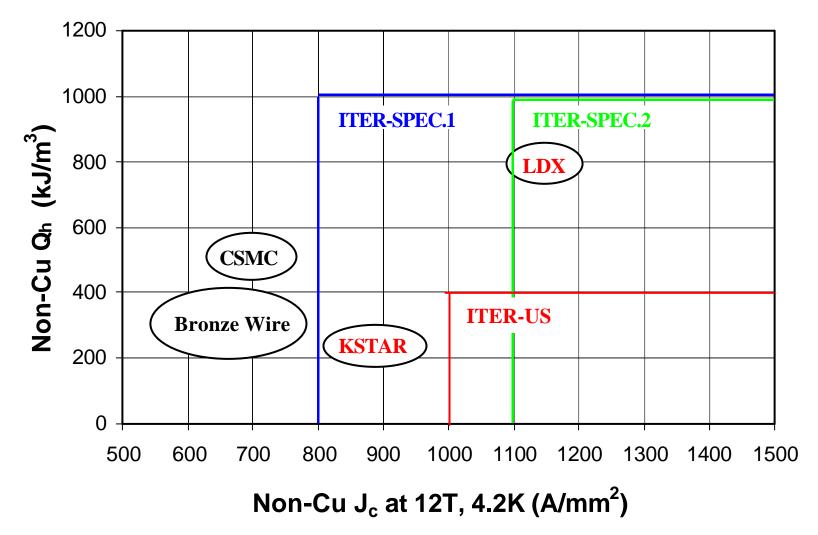
- CS Model Coil, 1993 1997
 - Supplied 4.5 metric tons of HP-1 type internal-tin Nb3Sn strand with Cr-plating.
- LDX-F (Levitated Dipole Experiment), 1998 1999
 - A joint Columbia University & MIT Project.
 - 1.3 MA, 0.8 m diameter, 5 T Floating Coil Experiment for High-Temperature Plasma Experiments and Fusion Science Research.
 - Solely supplied 2 metric tons of highly customized internal-tin Nb3Sn Cable-In-Channel.
 - React & wind approach was adopted.



Projects in the Fusion area


- KSTAR (Korea Superconducting Tokamak Advanced Research), Since 1998
 - Requires high performance internal-tin Nb3Sn (HP-3 type).
 - Conductor supplied:
 - 6 metric tons of internal-tin Nb3Sn strand for TF and CS coils.
 - (12 metric tons of NbTi strand for PF coil (sole supplier).)
- ITER-EFDA, 2004
 - Pre procurement order of advanced TF Coil Nb3Sn strand.
- ITER-US
 - Pre procurement order of advanced CS Coil Nb3Sn strand under preparation by the US party.

OKAS-Nb₃Sn for High Energy Physics


Conductor Characteristics							
Bar	Bare Dia. (mm)				0.60		
Cu/non-Cu Ratio				0.6			
No. of Filaments				26000			
Filament Dia. (μm)				2.0			
Non-Cu Q _h (kJ/m ³)				6210			
D _{eff} (µm)							
$\frac{Measurement Criteria}{I_c: 0.1 \mu V/cm},$ n-value: 0.1~1.0 μ V/cm							
B (T)	11.0	12.0	13.0	14.0	15.0	16.0	
I _c (A)	517	431	348	287	224	166	
n-value							
N-Cu J _c (A/mm²)	2952	2460	1985	1640	1277	949	

12 | March 24, 2004 | WAMS 2004 / RSL

Current Density & Hysteresis Loss

Summary

- Need for the Further Nb₃Sn development
 - Both non-Cu Jc and AC loss have been improved.
 - Further improvement is required to secure higher margin.
 - More aggressive (higher temp.) heat treatment for reaction is necessary to optimize Jc.
 - Scale-up of both sub-element billet and restack unit is in progress.

HTS Activities

- Joint project with CNR-IMEM and Edison to develope coated conductors
- 16:30 Today Dr. Zannella will give a presentation about this subject.

