

Development of LTS and HTS conductors for Accelerator Magnets at EAS

Helmut Krauth

European Advanced Superconductors (EAS)

and

European High Temperature Superconductors (EHTS)

Hanau, Germany

advancedsupercon.com

Title

Historical Look Back

Present EAS Activities and Plans

- LTS

- NbTi : Conductors for Pulsed Magnets
- Nb₃Sn : Conductors for Pulsed Magnets (Bronze Route) and High Field Magnets (PiT)
- HTS : for Elevated Temperature Operation and/or Very High Field Magnets
 - Bi2233 : Multifilamentary Tapes
 - YBCO : Thin Film Conductors ("Coated Conductors")

- 1970 Big European Bubble Chamber (BEBC), CERN
- 1971 PLUTO Detector, DESY
- 1979 ISR Quadrupoles, CERN
- 1986 ALEPH Detector, CERN
- 1987 HERA Quadrupoles, DESY
- 1990 CLEO Detector, Cornell
- 1991 H1 Detector, DESY
- 1992 CLAS Torus, CEBAF
- 1997 ATLAS Detector, CERN
- 1998 LHC Dipoles and Quadrupoles MQM/MQY, CERN

- ++ Magnets for high Energy Physics (Accelerator and Detector Magnets) have always been a Technology Driver for Superconductors
- -- But never (or very seldom) were a Cash Generator
- ? What will be in Future?

Multifilamentary Strand 8,8 x 3 mm² 32 Filaments, untwisted Cu Ratio 25

Composite Conductor 10 Strands in parallel e-beam welded 90 x 3 mm² $I_c \approx 8000A @ 4.2 K, 5 T$

Conductor

Dimension Unit length Total length Critical Current Operating Current RRR (ALU)

57 x 12 mm² 1730 m 56 km > 58 kA @ 4.2 K; 5 T 20.5 kA @ ~ 4.8 K; 3.8 T > 1000

Cable

No. Of strands 38 Dimension 26 x 2.3 mm²

Strand

Diameter 1.3 mm Cu : NbTi 1.2 Critical Current

> 1700 A

diameter 1.065 mm 8670 filaments à 7 µm double stacking

dipole cable 01 with 28 strands

diameter 0,735 mm 6264 filaments à 6 µm single stacking

matching quadrupole cable 06 with 22 strands

diameter 0,480 mm 2124 filaments à 6 µm single stacking

matching quadrupole cables: cable 04 and 07 with 36 strands cable 05 with 34 strands

- Filament diameters (6 μm) of Conductors for Present Accelerator Magnets (LHC) are Based on Field Quality Considerations
- Pulsed Magnets will be needed for fast cycling Accelerators
- Example GSI Synchrotrons SIS 100 and SIS 300
 - SIS 100 : $B_m = 2 T$, $\dot{B} = 4 T/s$
 - SIS 300 : $B_m = 6 T$, $\dot{B} = 1 T/s$
- ⇒ Pulse Loss Reduction is Essential Conductor Losses are Contributing Significantly
- Losses at Each Level have to be Reduced
 - Filaments : Diameter « 6 µm (e.g. 3.5 µm)
 - Strands : Twist pitch very tight (few mm)
 - Cable : Resistive Barriers (e.g. SS central foil)

Strand Development with 3.5 μ m Filaments

- Optimization of jc
 - geometrical strand design
 - thermomechanical treatment
- Reduction of excess magnetization
 - filament geometrical distortions
 - proximity coupling

Achievements with optimized Cu-Matrix Conductors

- Same jc level at 3.5 μm as with 6 μm (LHC)
- Excess magnetization can be avoided even with a Cu-Matrix except below 0.3 T

 \Rightarrow Ongoing Development at EAS

- Magnetization of 3.5 µm NbTi filaments with Cu-matrix present with Cu-matrix etched away
- \Rightarrow Proximity coupling sets in below 0.3 T

Bronze Route is best suited for fine filament Nb₃Sn Conductors because of Bronze Matrix and their Properties

- Large Matrix to Filament Area Ratio (to provide enough Sn)
- High Hardness of Bronze (limited filament geometry distortions during hot and cold working)

Achievements with strands for ITER CSMC (Central Solenoid Model Coil)

- Non Cu jc 650 A/mm² @ 4.2 K, 12 T, 0.1 $\mu\text{V/cm}$
- Hysteresis Losses $P_h \leq 100~mJ/cm^3$ per full \pm 3 T cycle
- \Rightarrow Present contract with EFDA for ITER
 - Goal jc $\geq 800~\text{A/mm}^2$ @ 4.2 K, 12 T, 0.1 $\mu\text{V/cm}$
- ⇒ Best Achievement with Bronze conductors so far jc ≈ 900 A/mm² @ 4.2 K, 12 T, 0.1 μ V/cm

Filament bridging due to low local bronze ratio

- \rightarrow n-value highest
- \rightarrow effective filament diameter
 - \approx bundle diameter

Avoidance of filament bridging due to high local bronze ratio

- \rightarrow reduced n-value
- \rightarrow low d_{\rm eff} low losses

Conductor Specifications

<u>EU (NED)</u>		<u>US</u>		
1500 A/mm² @ 15 T, 4.2 K, 0.1 μV/cm	Non Cu j _c	3000 A/mm² @ 12 T,4.2K		
£ 50 μm	d _{eff}	<40µm		
1.25mm	D	0.3-1.0mm		
50 – 55 %	Cu fraction	~50 %		

Contractual Co-operation EAS / SMI

- Scale-up of PiT process
 - Production units / Unit lengths
 - Production capacity
- Further Enhancement of Properties
- Cost Reduction

Main Targets

- Accelerator Magnets
- ITER Coils
- High Field magnets

504 filament PiT at intermediate diameter

Mono filament

- Nb or NbTa tubes
- NbSn₂ based powder

Multifilamentary wire

- 36 to 504 filaments in a Cu matrix
- Typical wire diameter 0.5 to 1.3 mm
- Filament diameter 20 to 60 μm
- Short heat treatment
- Well defined geometry

Cross section of a PiT filament after heat treatment (typ. 64 h / 675 °C)

From outside:

- Cu matrix
- Unreacted Nb layer
- Nb₃Sn layer
- Residual powder core

Non Cu jc up to 2450 A/mm² @ 12 T, 4.2 K, 0.1 μ V/cm 1400 A/mm² @ 15 T, 4.2 K, 0.1 μ V/cm

Details see contribution of Jan Lindenhovius / SMI

Bi-2223 (Bi(Pb)₂Sr₂Ca₂Cu₃Oxide) Tape Conductors

- Under development at EAS since more than 10 years (Initially EAS concentrated on round Bi-2212 conductors)

YBCO (Y₁Ba₂Cu₃Oxide) Tape Conductors

 Joint development of EAS together with the recently founded affiliate EHTS (European High Temperature Superconductors) Company, Hanau + Göttingen in co-operation with University Göttingen (Prof. H.C. Freyhardt)

cross section of a multifilamentary Bi-2223-tape (approx. 4 mm x 0.21 mm):

width:	approx. 4 mm
thickness:	approx. 0.21 mm
number of filaments:	121
filling factor:	approx. 30 %
material of matrix:	Ag
material of sheath:	AgMg

typical I_c: $\approx 100 \text{ A}$

 \approx 100 A @ 77 K, self field

typical surface of critical current over magnetic field and temperature

Temperature dependence of critical current in self field

Field dependence of critical current at 77 K

Field dependence of critical current at 60 K

Field dependence of critical current at 20 K

Field dependence of critical current at 4 K

Bi-2223-tapes at low temperatures and high magnetic fields (measurements performed @ GHMFL, France)

design is an output from collaboration SIEMENS AG & EAS (VAC) an odd number of transposed tapes, positions are equivalent

designed for

- high total currents
- low ac-loss
- high flexibility

Ic-measurements over long lengths experimental setup

- During the last 2 years YBCO based, biaxially textured thin film conductors ("Coated Conductors") were proven to exhibit substantial potential for applications, based on their high current carrying capacity
- For Technical Superconductors functionalities other than jc are mandatory e.g. protection by sufficient amount of normal conducting material and mechanical strengthening
- It was therefore decided to combine the expertise of EAS on Technical Superconductors with that of ZfW Göttingen on YBCO Coated Conductors
- The newly founded EHTS (European High Temperature Superconductors) company, an affiliate to EAS, together with EAS is aiming at developing Technical YBCO conductors based on the technology developed by ZfW
- The co-operation with Prof. H.C. Freyhardt and his Group will be continued

The basic thin film composite consists of

- A high strength substrate, typically stainless steel about 100 µm thick, depending on strength requirements
- The active layer and auxiliary layers (each 1 to few µm thick)
 - Buffer layer, preferentially YSZ (Yttrium Stabilized Zirkonia) produced by IBAD (Ion Beam Assisted Deposition
 - YBaCuOxide layer, preferentially produced by PLD (Pulsed Laser Deposition)
 - Conductive protection layer, e.g. made of gold
- A Technical Conductor requires
- Additional normal conducting material for protection, preferentially of Cu (100 μ m to few 100 μ m thick)

- No final conductor geometry defined
- Much less characterized compared with Bi-2223

Achieved performance

- Up to 40 A per mm width of conductor @ 77 K, self field
- Typ. 120 A per mm width of conductor @ 4.2 K, 20 T

In a "virtual conductor" with 100 μ m SS and 100 μ m Cu this corresponds to

- jc \approx 200 A/mm² @ 77 K, self field
- jc ≈ 600 A/mm² @ 4.2 K, 20 T (!)
- This makes YBCO in terms of jc very competitive to Bi-2223

- Increase production unit lengths from present 10 m to 100 m to \geq 1000 m
- Demonstrate homogeneity and reproducibility of long lengths
- Further increase performance
- Produce and test Technical Conductors with adequate protection and mechanical properties
- Build end test demonstrators for applications
- Increase production speed
- Decrease production cost

HTS Conductor Applications : Status and Prospects

	Bi-2223 multifilamentary			Y-123 thin film		
	77 K	20 K	4 K	77 K	20 K	4 K
Current Leads	+++		· +++	0 -		→ 0
Power Cables / Bus Bars	++	÷	÷	+	<u>.</u>	÷
FCL	0	÷	÷	+	÷	÷
Transformer	++	÷	÷	0	÷	÷
Motor / Generator	0	++	÷	(+)	(+)	÷
Magnets	÷	++ ^{*)}	++ * ⁾	(+) ^{*)}	(+) ^{*)}	(+)* ⁾

- +++ Product
- ++ Tested successfully in demonstrators
- + Tested in laboratory scale
- (+) Promising
- 0 Questionable
- + Not interesting and/or not possible

*) strongly dependent on magnetic field

- EAS is actively pursuing research and development
 - on all major LTS and HTS materials
 - for all important applications
- Accelerator applications remain a focus of our development
- Strategic acquisitions and partnerships help to speed up development and to increase efficiency