

The Research Program on Applied Superconductors in Geneva

R. Flükiger

Dépt. Phys. Matière Condensée, Université de Genève 24, quai Ernst Ansermet 1211 Genève, Switzerland

Outline

- * Research Goals and Facilities in Geneva
- * Bi, Pb(2223): Fundamental and Applied Research
- * MgB₂: Wires Produced by the *Ex Situ* Technique
- * Nb₃Sn: Multifilamentary Bronze Wires
- * Conclusions

Research Goals and Facilities at GAP/DPMC

Mechanisms and Development of High Field Wires and Tapes

® NMR, Laboratory Magnets, Accelerator Magnets

Studies on Single Crystals: Bi,Pb(2223), MgB₂ Tape and Wire Preparation: Bi,Pb(2223), MgB₂, Nb₃Sn Magnetization, Relaxation Effects Strain Effects on J_c at Fields > 17 T (Walters Spiral)

Facilities at GAP in Geneva

Wire and tape preparation

- * Hot Isostatic Extrusion machine: 250 ton, 47 mm dia.
- * Deformation machines

Processing and analysis

- * HIP machine: 2 kbar, up to 400 bar O_2 pressure, 20 l.
- * DTA, up to 2 kbar

Walters Spiral (WASP) for j_c (**e**) measurement

Strain rig at University Geneva:

£ 1′000 A

£ 17 T (actually) £ 21 T (June 04)

£ 800 mm length

High field laboratory

The Bi, Pb(2223) System

E. Giannini

X.D. Su

G. Witz

N. Clayton

N. Musolino

The system Bi, Pb(2223)

Phase Formation by Nucleation and Growth

(J.C. Grivel et al., 1995)

Proof for « transient liquid » by neutron diffraction (E. Giannini et al., 1997)

Growth of Bi(2223) and Bi, Pb(2223) single crystals

(E. Giannini et al., 2003)

Relaxation Rate on Bi(2223) and Bi(2212)

(N. Clayton et al., 2004)

Travelling Solvent Floating Zone (TSFZ) in Image Furnace

Bi(2223) Single crystals

E. Giannini et al. DPMC, Geneva

Magnetic characterisation

Bi(2223) crystal annealed at 500°C, p(O₂)=100 bar, 100h

 $T_{c} = 109 \text{ K}$

102 104 106 108 110 112

60

Temperature [K]

80

100

120

Δ**T** < 1 K

 $\mu_0 H = 0.35 \ 10^{-4} \ T$ $\mu_0 H = 2 \ 10^{-4} \ T$ $\mu_0 H = 5 \ 10^{-4} \ T$

40

6

Susceptibility [emu/cr

20

-0.2

-0.4

-0.6

-0.8

Bi, Pb(2223) Single Crystals

E. Giannini et al., SuST Jan. 04

Relaxation Rate

N. Clayton, N. Musolino, E. Giannini, R.Flükiger., ICMC 2004, Wollongong

Bi, Pb(2223): Problems to be solved

Density, Homogeneity (microscale):

High pressure experiments (Hellstrom et al.)

Texture:

Texture in the *a*,*b* plane: not obtained so far.

This is the really limiting factor for Bi, Pb(2223) tapes

MgB₂ Tapes « Ex Situ » Technique; Limitations

Paola Lezza HongLi Suo Roman Gladyshevskii

Archamps, 23.3.04

Sample preparation

- $T_c = 40 \text{ K}$
- Ex-situ technique \rightarrow pre-reacted powde
- Powder milling

Deformation steps:

Heat treatment at 920°C, 30 min

X-ray diffraction

MgB₂/Fe tape after deformation and annealing

Phase/Spa ce group	Site	Wyckoff Position	х	У	Z
MgB ₂	Mg	1(a)	0	0	0
P6/mmm	В	2(d)	1/3	2/3	1/4

Differential thermal analysis

MgB₂ core

 Onset of evaporation changes, due to the presence of Fe (sheath)

Initial Powder Size

Impurities (wt.%)						
Sample/ %	Н	С	0			
Α	0.10	0.13	1.05			
В	0.14	0.21	2.12			
С	0.15	0.14	1.54			

In Situ

MgB₂/Fe wires

920°C/30 min., in vacuum

Present data

Domains and grain size

hkl	Sample /PMS	Domain size (Å)					
After deformation							
(002)	B/20 mm	219.84					
(002)	C/10 mm	338.32					
(110)	B/20 mm	305.67					
	C/10 mm	144.16					

hkl	Sample /PMS	Domain size (Å)					
After annealing 920°C 30 min							
(002)	A/40 mm	501.04					
	B/20 mm	600.23					
	C/10 mm	405.83					
(110)	A/40 mm	238.47					
	B/20 mm	191.37					
	C/10 mm	268.22					

• Best sample: the one with the larger domain size on c-axis and medium particle size

Particle size not dominant

Texture

PMS (μm)

Residual Strain

hkl	Sample /PMS	2q(°)	Breadth (°2q)	FWMH (°2q)	Strain (e*10 ⁻³)	hkl	Sample /PMS	2q(°)	Breadth (°2q)	FWMH (°2q)	Strain (e*10 ⁻³)
After deformation				After 920°C 30 min							
(002)	B/20	52.0	0.602	0.436	2.40	(002)	A/40 mm	52.06	0.392	0.314	2.28
	mm						B/20 mm	52.12	0.400	0.331	2.56
	C/10 mm	52.0	0.551	0.436	3.09		C/10 mm	52.03	0.413	0.320	2.15
(110)	B/20	60.0	0.605	0.475	2.78	(110)	A/40 mm	60.13	0.531	0.373	1.53
	mm						B/20 mm	60.21	0.608	0.413	1.37
	C/10 mm	60.0	0.747	0.489	2.07		C/10 mm	60.11	0.574	0.430	2.24

 $\rightarrow\,$ Residual strain is released after final annealing

- * MgB_2 domain sizes have been determined by means of X ray diffraction \circledast J_c is correlated to the domain size
- * A low degree of texturing has been found; highest for the largest particle sizes (analogy: Bi systems)

Study will be extended to: * "in situ " wires

* C or SiC added wires

Future perspectives

 MgB_2 is perfectly ordered: limitation of B_{irr} Analogy to Nb_3Sn

Main research goal:

Find a way to slightly decrease the order parameter.

- * Additives: SiC, C,.... Dou et al.
- * Inclusions: MgO,... Only in thin films (?)
- * Innovative growth processes

Multifilamentary Nb₃Sn Wires Bronze route

V. Abächerli

D. Uglietti

B. Seeber

Motivation for bronze route

Currently used for high field NMR magnets (persistent mode)
Small filament diameter, ≤ 5 μm
Small effective diameter, ≤ 20 μm
Higher mechanical stability: ε_m (after many cycles)
No voids (compressive stresses)

Limitation

Nb content is markedly lower than for other techniques

These results of J_c and *n* clearly reveal the Ti doping by the bronze as more performing

The analysis of the residual niobium ratio of the filaments and residual tin content in the bronze does not show a significant difference compared to the filament doping method.

Further high resolution analysis has to be done on the nanostructure of the A15 phase (grains, grain boundaries).

Nb₃Sn Wires: effect of Ti additives

600°C/100h-670°C/150h

Bronze route wires: distribution of Sn in a filament

 T_c distribution from by specific heat in $(Nb,Ti)_3$ Sn multifilamentary wire (Y. Wang, A. Junod, Geneva)

Actually, bronze route only competitive for very high fields (NMR applications: B > 21 T), where other factors are important:

Mechanical stability

(uniaxial and transverse stress)

Joint techniques

Thermal stability

Small filament diameters: positive influence on all these properties

Next goals

New investigation by means of specific heat, in view of narrower T_c distributions \circledast higher J_c values

Walters Spiral (WASP) for \mathbf{j}_{c} (e) measurement

Strain rig at University Geneva:

£ 1′000 A

£ 17 T (actually)

21 T (June 04)

£ 800 mm length

³ 0.01 m//cm

Nb₃Sn wires with Ta and Ta + Ti additives, GAP/Univ. Geneva

