Panorama of the Coated Conductor Developments in Europe

Herbert C. Freyhardt Universität Göttingen & ZFW gGmbH Göttingen

HTS-CC Products & Market

Electrical & Power Engineering, Magnet Technology

Coated conductors: challenges

High performance
High processeing rate
Low production costs

CC for Applications in Electrical & Power Engineering

HTS must be available as

wires, tapes or assembled conductors

What is required for ? J_c high @ 77K, moderate magn. fields @ 4.2K and below, high fields

Highly textured films

- sufficient film thickness for high I_c
- thermal & mechanical stability ...

Coated Conductors: A Multilayer Architecture

CAP LAYERProctective;Conductive

HTS Coated Conductor

HIGH TEMP. SUPERCONDUCTOR • $J_c(T,B)$, $J_c(e)$, ac losses

BUFFER ARCHITECTURES

Diffusion barrier; Thermal Expansion
Adhesion; Interface Reactions
Texture transfer; Epitaxy

•Lattice matching; Surface Reconstruction

SUBSTRATES

•poly: SS, Hastelloy, ...•Thermo-Mech. Treatment: Ni, Ni alloys,...

	Material	Structure	T _m /°C	а ₀ (зоок)	L _m	Misfit YBCO (%)	Misfit to Ni (%)	Misfit to NiO (%)
	Ni	fcc	1455	3.52	3.52	-9.38	0.00	-18.47
	YSZ	cubic / fluorite	2680	5.13	3.63	-6.06	3.03	-14.88
	Gd ₂ Zr ₂ O ₇	cubic / pyrochlore		10.52	3.72	-3.49	5.38	-12.10
/	Y ₂ O ₃	cubic / Mn ₂ O ₃	>2400	10.6	3.75	-2.67	6.13	-11.20
	LaAlO ₃	rhombohedral / perovskite	2100	5.36	3.79	-1.58	7.12	-10.03
	$La_2Zr_2O_7$	cubic / pyrochlore	2300	10.8	3.81	-1.05	7.61	-9.45
	Gd ₂ O ₃	cubic / Mn ₂ O ₃	>2400	10.81	3.82	-0.79	7.85	-9.16
	CaTiO ₃	orthorhombic / perovskite		5.38x5.44	3.82	-0.79	7.85	-9.16
	CeO ₂	cubic / fluorite	2600	5.41	3.83	-0.52	8.09	-8.88
	Eu ₂ O ₃	cubic / Mn ₂ O ₃	>2300	10.87	3.84	-0.26	8.33	-8.59
	LaNiO₃	rhombohedral / perovskite		5.45	3.84	-0.26	8.33	-8.59
	YBCO	orthorhombic		3.83x3.88	3.85	0.00	8.57	-8.31
	$Ca_{0.6}$ Sr _{0.4} TiO ₃	orthorhombic / perovskite		5.46x5.46	3.86	0.26	8.81	-8.03
perovskite	NdGaO₃	orthorhombic / perovskite	1670	5.43x5.5	3.86	0.26	8.81	-8.03
rocksalt	Sm ₂ O ₃	cubic / Mn ₂ O ₃	>2300	10.93	3.86	0.26	8.81	-8.03
fcc structure	La ₂ NiO ₄	tetragonal		3.86	3.86	0.26	8.81	-8.03
spinel	Sr ₂ RuO ₄	tetragonal		3.87	3.87	0.52	9.04	-7.75
fluorite	LSMO	rhombohedral / perovskite		5.49	3.88	0.77	9.28	-7.47
C-type RE	NdBCO	orthorhombic		3.87x3.92	3.89	1.03	9.51	-7.20
pyrochlore	Pd	fcc	1555	3.89	3.89	1.03	9.51	-7.20
	Gd ₂ CuO ₄	tetragonal		3.89	3.89	1.03	9.51	-7.20
	SrTiO ₃	cubic / perovskite	2080	3.91	3.91	1.53	9.97	-6.65
•	LaMnO₃	orthorhombic / perovskite		5.54x5.74	3.91	1.53	9.97	-6.65
	Nd ₂ O ₃	cubic / Mn ₂ O ₃	>2300	11.08	3.92	1.79	10.20	-6.38
	SrRuO 3	orthorhombic / perovskite		5.57x5.54	3.93	2.04	10.43	-6.11
	Nd ₂ CuO ₄	tetragonal		3.94	3.94	2.28	10.66	-5.84
	BaTiO₃	tetragonal / perovskite		3.99	3.99	3.51	11.78	-4.51
	Ag	fcc	961	4.09	4.09	5.87	13.94	-1.96
	SrZrO ₃	orthorhombic / perovskite	2800	5.79x5.82	4.10	6.10	14.15	-1.71
	BaSnO ₃	cubic / perovskite		4.12	4.12	6.55	14.56	-1.21
	NiO	cubic / rocksalt	1984	4.17	4.17	7.67	15.59	0.00
J.E.Evetts	BaZrO 3	cubic / perovskite	2690	4.19	4.19	8.11	15.99	0.48
	MgO	cubic / rocksalt	3100	4.21	4.21	8.55	16.39	0.95
	TiN	cubic / rocksalt		4.24	4.24	9.20	16.98	1.65

Coated Conductors: two different routes

CC Developments in Europe			
Essential Development Lines			
•Ni-Cr SS /IBAD-YSZ/CeO2/PLD-YBCO	ZFW, UGoe		
•Hastelloy/ISD-MgO/homo-MgO/TCE-YE	CO or –R.E.BCO Theva		
•TMT-Ni,Ni-W/TCE-CeO2/TCE-YBCO	EDISON, IMEM-CNR, Europa Metalli		
 development of TMT substrates 			
-Ni and Ni alloys together with CSD	buffers mainly IFW Dresden		
-Cu based substrates	La Farga Lacambra, Univ. Barcelona		
 development of 			
 MOCVD for buffer architectures and 	d YBCO deposition on TMT and IBAD		
substrates	Nexans, mainly INPG		
 CSD buffer systems and TFA-YBCO on TMT and IBAD substrates 			
mainly ICMAB			
 SOE (Surface Oxidation Epitaxy) of TMT tapes together with MOD and PLD 			
buffers in combination with high-rate hyb	ride LPE UCam		

10 M H				
vac. deposition Essential CC Developments				
non-vac. depo	s. Esserreration E			
	Polycrystalline Substrates	Biaxially Textured S's : TMT, RABiTS		
Substrates	Ni,Cr-based SS, Hastelloy, Inconel	Ni, Ni-W, Ni-Mo, Ni-Cr, Ni-Cr-Al, Ni-V,		
	poly Ni	composite tapes Cu-based tapes		
	Forced Texturing of Buffer Layer	on Ni, Ni-alloys/Ni & Ni, Ni-alloys/SOE-NiO		
	IBAD-YSZ; IBAD-ZGO; IBAD-MgO	no SOE-NiO CeO2:TCE,EB; Y2O3/YSZ/CeO2,		
Buffer Layer Architect.	+ CL or CLs	MOCVD: CeO2, YSZ,Y2O3,Gd2O3,LNO		
	ISD-MgO/homo-MgO	CSD: CeO2; BZO, STO, SZO, LAO, LZO, NCO,		
	CeO2, Y2O3, MOCVD	spray: CeO2		
	perovskite-type, CSD	on SOE-NiO: PLD-BZO,-SZO,-CSTO		
		on SOE-NiO: MOD-BZO,-SZO		
	PLD-YBCO, HoBCO	YBCO-PLD, YBCO-TCE		
VPCO	TCE-YBCO, DyBCO	YBCO-MOCVD, spray pyrol.		
IBCO	on SS-IBAD-YSZ	YBCO BaF2-method		
R.E.BCO	MOCVD-YBCO	YBCO-TFA		
	TFA-YBCO	LPE; HR hybride LPE		

Cr-Ni-SS / IBAD - YSZ / PLD - YBCO

Ion Beam Assisted Deposition

High-Jc SS/IBAD-YSZ/PLD-YBCO

ZFW gGmbH

TEM & HR-TEM Investgations of the texture development

selected area diffraction

Coated Conductors: Long YBCO coated SS tapes

- SS tape (0.1 mm) // IBAD-YSZ (1.5 μm) // CeO₂ (<0.1 μm) // YBCO (1.1 μm)
- Coated Conductor : 8m long, 4mm wide, with 3.5mm-wide YBCO film
- Critical current, I_c , and current density J_c :

(77K, SF)

I_{c,min} = 75 A => J_{c,min} = 1.95 MA/cm² & Ic/w = 214 A/cm

Parameter	Unit			Sam	ple.no			
		N1148	N1148	N2154	N2159	N2161	aN2161	<u>bN319(</u>
Length, L	m	1.9	1.9	9.0	10.3	1.0	0.2	6.2
Effect. width, w	* mm	92	9.2	3.4	3.5	9.5	3.5	3.7
YBCO thickness	s µm	1.25	1.25	1.1	1.0	2.4	2.6	2.8
T_c	K	89.5	89.5	89.5	91.2	90.0	90.0	90.1
Temp. of I_c Test	Κ	77	67	77	77	77	77	77
I_c	А	142	290	67	78	301	137	125
I_c/w^*	A/cm	154	315	197	223	317	391	
J_{c}	MA/cm	$n^2 1.23$	2.52	1.79	2.23	1.32	1.51	1.21
Engg.current d. J_e	kA/cm	² 15.4	31.5	19.7	22.3	31.7	391	338
Iquench	A	153	-	67	79	310	153	136

Latest Results 08 2003: 357 A/cm-w (6.1m, 3.5mm, 3.2µm YBCO)

Thickness Dependence of $J_c \& I_c$

Coated Conductors: YBCO Texture

Self-epitaxy of buffer layers

Coated Conductors YBCO coated SS tapes

10.3 m / 3.5 mm

500 mm

2 m / 10 mm

6 m / 4 mm

Tape testing: Best I_C measurement result (NSS 170)

Coated Conductors: Long YBCO coated SS tapes

Measurements performed at both Siemens and ZFW

Tape Testing: I_C Degradation by Mechanical Stress (NSS 158)

2 M 1				
vac. deposition Essential CC Developments				
Substrates	Polycrystalline Substrates Ni,Cr-based SS, Hastelloy, Inconel poly Ni	Biaxially Textured S's : TMT, RABiTS Ni, Ni-W, Ni-Mo, Ni-Cr, Ni-Cr-Al, Ni-V, composite tapes Cu-based tapes		
Buffer Layer Architect.	Forced Texturing of Buffer Layer IBAD-YSZ; IBAD-ZGO; IBAD-MgO + CL or CLs ISD-MgO/homo-MgO CeO2, Y2O3, MOCVD perovskite-type, CSD	on Ni, Ni-alloys/Ni & Ni, Ni-alloys/SOE-NiO no SOE-NiO CeO2:TCE,EB; Y2O3/YSZ/CeO2, MOCVD: CeO2, YSZ,Y2O3,Gd2O3,LNO CSD: CeO2; BZO, STO, SZO, LAO, LZO, NCO, spray: CeO2 on SOE-NiO: PLD-BZO,-SZO,-CSTO on SOE-NiO: MOD-BZO,-SZO		
YBCO R.E.BCO	PLD-YBCO, HoBCO TCE-YBCO, DyBCO on SS-IBAD-YSZ MOCVD-YBCO TFA-YBCO	YBCO-PLD, YBCO-TCE YBCO-MOCVD, spray pyrol. YBCO BaF2-method YBCO-TFA LPE; HR hybride LPE		

ISD – texturing & DyBCO – evaporation

THEVA

Reel to reel DyBCO - evaporation

Latests results (all reel to reel ISD)

30 m ISD – MgO buffer deposition (10 mm wide)

10 m DyBCO by evaporation

Short samples (5 – 20 cm)

 $j_c = 1.6 - 1.9 \text{ MA/cm}^2$

 $I_c = 340 \text{ A/cm} @ 2.4 \text{ mm}$

10 m DYBCO tape

• 1m tape samples $I_c = 60 - 80$ A

Problems to be solved: Local defects due to handling problems

2 M 1				
vac. deposition Essential CC Developments				
Substrates	Polycrystalline Substrates Ni,Cr-based SS, Hastelloy, Inconel poly Ni	Biaxially Textured S's : TMT, RABiTS Ni, Ni-W, Ni-Mo, Ni-Cr, Ni-Cr-Al, Ni-V, composite tapes Cu-based tapes		
Buffer Layer Architect.	Forced Texturing of Buffer Layer IBAD-YSZ; IBAD-ZGO; IBAD-MgO + CL or CLs ISD-MgO/homo-MgO CeO2, Y2O3, MOCVD perovskite-type, CSD	on Ni, Ni-alloys/Ni & Ni, Ni-alloys/SOE-NiO no SOE-NiO CeO2:TCE,EB; Y2O3/YSZ/CeO2, MOCVD: CeO2, YSZ,Y2O3,Gd2O3,LNO CSD: CeO2; BZO, STO, SZO, LAO, LZO, NCO, spray: CeO2 on SOE-NiO: PLD-BZO,-SZO,-CSTO on SOE-NiO: MOD-BZO,-SZO		
YBCO R.E.BCO	PLD-YBCO, HoBCO TCE-YBCO, DyBCO on SS-IBAD-YSZ MOCVD-YBCO TFA-YBCO	YBCO-PLD, YBCO-TCE YBCO-MOCVD, spray pyrol. YBCO BaF2-method YBCO-TFA LPE; HR hybride LPE		

Moving tapes: TCE

\blacktriangleright Deposition rate = 3 Å/sec

Simple single-pass system to investigate deposition under tape movement

Sample length = 20 cm YBCO width = 0.7 cm YBCO thickness = 0.6 µm

 $I_c/w (77 \text{ K}) = 110 \text{ A/cm-width}$ (stationary) 220 A/cm-w $J_c (77 \text{ K}) = 1.8 \text{ MA/cm}^2$

CCA 2003, 12-13 Sept., Orta San Giulio, Italy

Département de Physique de la Matière Condensée, Université de Genève

CCA 2003, 12-13 Sept., Orta San Giulio, Italy

EDISON

- 1				
vac. deposition Essential CC Developments				
Substrates	Polycrystalline Substrates Ni,Cr-based SS, Hastelloy, Inconel poly Ni	Biaxially Textured S's : TMT, RABiTSNi, Ni-W, Ni-Mo, Ni-Cr, Ni-Cr-Al, Ni-V,composite tapesCu-based tapes		
Buffer Layer Architect.	Forced Texturing of Buffer Layer IBAD-YSZ; IBAD-ZGO; IBAD-MgO + CL or CLs ISD-MgO/homo-MgO CeO2, Y2O3, MOCVD perovskite-type, CSD	on Ni, Ni-alloys/Ni & Ni, Ni-alloys/SOE-NiO no SOE-NiO CeO2:TCE,EB; Y2O3/YSZ/CeO2, MOCVD: CeO2, YSZ,Y2O3,Gd2O3,LNO CSD: CeO2; BZO, STO, SZO, LAO, LZO, NCO, spray: CeO2 on SOE-NiO: PLD-BZO,-SZO,-CSTO on SOE-NiO: MOD-BZO,-SZO		
YBCO R.E.BCO	PLD-YBCO, HoBCO TCE-YBCO, DyBCO on SS-IBAD-YSZ MOCVD-YBCO TFA-YBCO	YBCO-PLD, YBCO-TCE YBCO-MOCVD, spray pyrol. YBCO BaF2-method YBCO-TFA LPE; HR hybride LPE		

TMT / RABITS METHOD poly Ni alloy/multi buffer/TFA-YBCO

JT-BATTEL

U. S. DEPARTMENT OF ENERGY Superconductivity for Electric Systems Annual Peer Review Washington, DC – July 23-25, 2003

Superconductor⁻

OAK RIDGE NATIONAL LABORATORY

Texture in the Ni-4.5%W/ Ni-15% Cr composite after recrystallisation

TMT tapes : I FW Dresden

Ni, Ni5W, Ni0.1Mo, Ni13Cr, Ni9V: up to 30m, *in-plane* FWHM = 8° Ni4.5W/Ni15Cr composite tapes (yield strength 200 MPa)

RT Yield Strength

EBSD maps after 2-step recrystallization

Simulation of grain structure and misorientation of grain boundaries

A. Simulation of a realistic grain structure is done using the Monte Carlo Potts method

B.

Individual grains are assigned an orientation based on the global texture determined by the X-ray FWHM which is well simulated by a gaussian, assuming no correlations between neighbors

C.

The misorientation angles of grain boundaries are calculated and a grain boundary map generated

Effect of conductor dimensions

OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY

Development of C.C. by TFA Processing (SRL-ISTEC)

Improvement of Ic by Thickening YBCO Layer on IBAD by TFA-MOD

AMSC Results: March 2004

INPGrenoble

SS/YSZ //YSZ/CeO2/YBCO

ROC YSZ (200) = 4.6° ROC CeO₂ (200) = 4.6° ROC YBCO (005) = 2.8°

→ Best heterostructure

INPGrenoble

NiW/NiO//CeO₂/YSZ/CeO₂/YBCO

 $Jc = 5.10^{5} A/cm^{2}$

→ Best heterostructure

INPGrenoble

All sol-gel coated conductor

Buffer layers:

Compatibility with metallic substrates (RABiT and IBAD) Grain size, thickness and roughness can be modified by processing

Fluorite : CeO₂

Perovskite : BaZrO₃, SrTiO₃, LaAIO₃

Precursors: pentadionate, isopropoxide, acetate, sec-butoxide, ethylhexanoate

All CSD tapes architectures

CSD of oxide buffer layers

SrTiO₃/BaZrO₃ on NiO/Ni

Collaboration with Univ. Cambridge and Dresden

NiO grown by Surface Oxidation Epitaxy исмав

Non-reactive buffers matched with similar texture than the NiO template layer. Roughness must be improved

YBCO : Trifluoroacetates route

 $Cu(TFA)_2 + Ba(TFA)_2 + Y(TFA)_3 \quad \textcircled{B} \quad CuO + \boxed{BaF_2} + Y_2O_3 + (CF_3CO)_2O + CO_2 + CO + H_2O_2O_2 + CO_2 +$

Pyrolysis: T»300°C

$$2 \operatorname{BaF}_2 + 2 \operatorname{CuO} + \frac{1}{2} \operatorname{Y}_2 \operatorname{Cu}_2 \operatorname{O}_5 + 2 \operatorname{H}_2 \operatorname{O} \longrightarrow \operatorname{YBa}_2 \operatorname{Cu}_3 \operatorname{O}_{6.5} + 4 \operatorname{HF}$$

Reaction: T»700-800°C

No porosity

•Nucleation and growth rate can be controlled

•Multideposition can be performed

•Thickness dependence is still an issue

Long length CSD superconducting tapes

•European project "Novel Sol Gel Technology For Long Length Superconducting Coated Tapes" (SOLSULET)

Nexans

Batch furnace system for 35m CC tape with control of P_{tot}

Superconducting performance Vacuum vs

chemical deposition

Jc-B Properties in IBAD-PLD Tape (Fujikura Ltd. & Kyushu Univ.)

FCL-modules based on YBCO coated SS tapes

Jominal (non-limited) current 2 500 A (ampl.)			
Nominal power losses	~ 0.5 W		
Fault current, max.	50 000 A (ampl.)		
Peak power at fault current: 150 000 W			

REQUIREMENTS & STRATEGIC GOALS Reproducible Processing of YBCO-CC, S.E.BCO-CC

? YBCO CC in lengths of 100 m J_c^{eng} 400-700A/mm² @ 77K

•with cross-sectional architectures and properties (I_c (T,B,e,...), ac losses, mechanical & electro-mechanical prop., ease of handling; ...) determined by the particular application

assembled conductors

? YBCO CC in km lengths (for use at 77K) until 2005/6 at costs of < 50 ∉kAm

? Mass production in 2010/2012 at costs 10 ... 25 ∉kAm

Ŋ8

How to increase I_c ?

