

Critical current versus strain of long HTS and LTS technical superconductors up to 1000 A and 17 T

D. Uglietti, B. Seeber, V. Abächerli, P. Lezza and R. Flükiger

University of Geneva (Switzerland), Institute of Applied Physics - GAP

CONTENTS

- •Superconductors in magnets
- $\bullet Nb_3Sn$ mechanical properties
- •Survey of devices for measuring $I_c(\epsilon)$
- •Geneva design
- •Results *Nb₃Sn*, *MgB₂*, *Bi2223*
- Conclusion

High field solenoids and accelerator magnets are the main application for LTS and HTS

In both devices hoop stresses can reach very high values

A better knowledge of $\underline{I}_{\underline{c}}$ as a function of strain and stress helps:

•to better exploit the potentiality of the conductors

•to compare different wires

The Nb₃Sn case

Why developing Nb₃Sn wire for high field NMR magnets?

- NMR is one of the superconductivity largest customers (applications in chemistry, biology, pharmacology)
- Increasing demand for high field NMR magnets: higher field means higher resolution (more information)

The goal is to reach the ultimate limit for Nb₃Sn

better material properties

better knowledge of the mechanical behaviour

special requirement for NMR: persistent mode operation \downarrow *It is important to know It how It is important to know It is important to know It is important if at 0.1 µV/cm and below*

This holds also for other materials (Nb₃Al, Bi2223, Bi2212, MgB₂)

High quality (i.e. low electric field) measurements could be a tool to study the behaviour of superconductors under strain(crack formation and irreversible critical current)

UNIVERSITÉ DE GENÈVE

Overview of the behaviour of Ic vs strain vs stress in Nb₃Sn

Devices to measure $I_c(\varepsilon)$

• Prof. Katagiri - Fac. of Eng., Iwate Univ., Japan

•J.Ekin - NIMS, Boulder (CO), USA

Devices to measure $I_c(\varepsilon)$

U shape spring University of Twente and Tsukuba (HFML) Pac-man University of Twente

Made with steel or Ti; wire soldered over the whole length

Χ •ε_m

- X •current transfer
- **X** •0.1 μV/cm

Made with Ti; wire soldered over the whole length

- $\mathbf{X} \cdot \mathbf{e}_{m}$
- V •current transfer
- **V** •0.1 μ V/cm

WASP University of Durham

Geneva design University of Geneva

Made with Cu/Be; wire soldered over the whole length

Χ •ε_m

- V •current transfer
- V •0.1 μV/cm and below

Made with Ti; different mounting procedures

- ν •ε_m
- •current transfer
- **V** •0.1 μV/cm and below

High Field Laboratory at Geneva University

Sample holders

- •Critical current on standard ITER barrel (3 samples per day 10T-17T)
- •Critical current under strain (1.5 days per sample)
- •Stress-strain (σ - ϵ)
- •AC susceptibility (harmonics), resistivity

•RRR

Magnets Split coil 6 T Oxford 9 T Oxford 17 T (Bruker 21T)

temperature range VTI: 4.2K/77K

Modified Walters Spiral (WASP)

for $I_c(\varepsilon)$ measurements

specifications:

- max current <u>1'000 A</u>
- \cdot wire length up to 0.8 meter
- \cdot max voltage taps distance 50 cm
- I_c criterion <u>0.01 μ V/cm</u>
- \cdot field up to 17 T (21 T soon)
- $\boldsymbol{\cdot}$ measurement of $\boldsymbol{\epsilon}_{m}$

Geneva design

SMI PIT wire

n value

OST HER wire 0.5mm diam billet #7069

(2500A/mm² nonCu at 12T)

Crack formation and V-I curves

The idea comes from Prof. Osamura - University of Kyoto

They establish a correlation between the irreversible behaviour of I_c and the shape of the V-I curve.

What about Nb₃Sn?

NIVERSITÉ DE GENÈVE

Furukawa for ITER, diam 0.8mm 360°C/5h - 460°C/30h - 650°C/240h

d = 26 cm - 4.2K - 13 T

Furukawa for ITER, diam 0.8mm 360°C/5h - 460°C/30h - 650°C/240h

d = 26 cm - 4.2K - 13 T

 $\cdot I_c$ does not depend on the criterion for strain up to 0.6%/0.7%.

•After strain is released, I_c depends strongly on the criterion

the irreversible strain limit depends on the I_c criterion

strain (%)

Columbus MgB₂ tapes

 $0.1 \mu V/cm$ - 4 T

$$\epsilon = +0.2\%$$
 $B_{irr} = +2.9\%$
 $\epsilon = -0.3\%$ $B_{irr} = -3.2\%$

 $\epsilon =+0.2\%$ T_c=+0.2% $\epsilon =-0.2\%$ T_c=+0.2%

Mounting procedure

Some materials, like Nb₃Al and Bi2223 do not exhibit a bell shape $I_c(\epsilon)$, so the pervious procedure can not be used.

the tape is wound tightly on the WASP strain gauges reference tape

ASC Bi2223 3-ply tape 4.2 K - 15 T

Conclusions

We have a developed a device to measure critical current of technical superconductors (wires and tapes) under strain up to 1000 A and 17 T (soon 21 T).

specifications:

- max current 1'000 A
- \cdot wire length up to 1 meter
- max voltage taps distance 50 cm
- I_c criterion $0.01 \mu V/cm$
- field up to 17T (sonn 21T)
- \cdot measurement of ϵ_m

Université de Genève

Nb₃Sn mechanical properties

from G. Rupp, in "Filamentary A15 Superconductors", pp.155, edited by M. Suenaga and A. F. Clark, 1980