

High Temperature Superconducting Cable for Power Transmission Applications

Contents

- Design possibilities of superconducting power cables
 - Warm and Cold dielectric concepts
 - Benefits and drawbacks
 - Grid operation of VLI (Very Low Impedance) cables
- Power cable development considerations
 - Design drivers and goals
 - Trade offs

Projects

- Major projects for power cables
- Economical benefits

Warm Dielectric Cable Concept

Cold Dielectric Cable Concept

Outer protective covering Outer Cryostat Wall Nexans Inner Cryostat Wall Liquid Nitrogen Coolant Copper Shield Stabilization HTS Shield Tape High Voltage Dielectric HTS Tape Core / Former

Cold Dielectric Alternatives

3 independent phases

Concentric phases / Triaxial

Three phases in one cryogenic envelope

Concentric (Triaxial) Concept

warm dielectric

cold dielectric

Design Comparison

	warm dielectric	cold dielectric	coaxial	
outer magn. field	yes	no	no	
AC-loss	high	low	low	
transport current	high	very high	very high	
dielectric	conventional	new type (cold)	new type (cold)	
cryostat	at high voltage	at ground potential	at ground potential	
	(difficult to access)	(easy access)	(easy access)	
HTS-tape amount	low	high (screen)	low	
accessories	almost conventional	new design required	very difficult at high	
			voltage levels	
cable inductance	as conventional cables	very low	very low	

DOE Co-Funded – 610m 138kV 2400A HTS Cable

Mexans Cable design drivers - LIPA Project Fact Sheet

- Long Island Power Authority east garden city substation
- Electrical operating characteristics
 - Operating voltage/current 138kV/2400A ~ 574MVA
 - Design fault current 69,000A @ 15 line cycles (250ms)
- Physical characteristics
 - Installation one 12" pipe (11,7"/ 297mm ID)
 - Length app. 610m
 - HTS tape length 128km
 - Cold dielectric design with three individual cryogenic envelopes
- Hardware deliverables
 - Three ~ 610m long phase conductors
 - Six 161kV outdoor terminations
 - One 10kW refrigeration system at one end
 - Single joint to be tested in the lab

Worlds First Installation of a Transmission Voltage HTS Cable in the World

Cable Design Aspects

Various aspects of cable design need to be traded Cooling station to reach the optimized distance Pipe size for design point during Former diameter installation normal operation as Cable loss well as **Optimized cable** design fault current operation Fault current and Tape Ic Cable core Cable rating

diameter

Pressure drop

duration

Technical Issue Cable Cooling

- Goal: cable temperature and pressure within specified range
- Trade off:
 - Hydraulic diameter determined by
 - Cable diameter
 - Pipe size
 - Distance between cooling stations (Length)
 - Cable losses determined by
 - HTS-tapes
 - Cryostat
 - terminations

Cable Cooling Example LIPA Project

Flow of LN₂ in single phase and back in two phases
Effect of second pump and / or cooling station analyzed

Mexans Technical Issue Fault Current Operation

- Goal: no bubble formation during fault event to avoid dielectric breakdown
 - Trade off:
 - Choice of materials
 - Resistivity
 - Thermal conductivity
 - Thermal capacity
 - Cable design
 - Current sharing properties
 - Heat exchange properties

Main HTS Cable Projects

Location	Main	Utilities	Cable			Use	Status	
	partners		Dielectric	Number	Characterictics			
			type	of phases				
U. S. A.	Pirelli / ASC		Warm	1	50 m / 115 kV / 2 kA	Demonstrator	Complete	
Berlin	Pirelli (ex-Siemens) [1]		Cold	1	50 m / 110 kV / 2.1 kA	Demonstrator	Stopped	
Italy	Pirelli / ASC	ENEL / Edison	Cold	1	30 m / 132 kV / 3 kA	Demonstrator	?	
Detroit	Pirelli / ASC	Detroit Edison	Warm	3	120 m / 24 kV / 2.4 kA	Network	Cryostat Issue	
Paris	Pirelli / ASC	EDF	Cold	1	50 m / 225 kV / 2.6 kA	Demonstrator	Complete	
Tokyo	SEI	TEPCO	Cold		30 m / 66 kV / 1 kA	Demonstrator	Complete	
Tokyo	SEI	TEPCO	Cold	3	100 m / 66 kV / 1 kA	Demonstrator	Complete	
Albany (NY)	SEI / IGC	Niagara Mohawk	Cold	3	350 m / 34.5 kV / 0.8 kA	Network	Ongoing	
Japan	Furukawa		Cold	1	500 m / 77 kV / 1 kA	Demonstrator	Ongoing	
Carrollton (Ga)	Southwire / IGC	Southern California Edison	Cold	3 (rigid)	30 m / 12.5 kV / 1.25 kA	Plant supply	Complete	
Copenhagen	NKT / NST [1]	Elkraft	Warm	3	30 m / 36 kV / 2 kA	Network	Complete	
Columbus (Ohio)	Southwire	American Electric Power	Cold / (Tri)	3	300 m / 12.5 kV / 2.5 kA	Network	Ongoing	
Kunming (China)	Innopower / Innova [2]	Yunnan Electric Power	Warm	3	30 m / 35 kV / 2 kA	Network	Ongoing	
Long Island (NY)	ASC / Nexans	Long Island Power Authority	Cold	3	610 m / 138 kV / 2.4 kA	Network	Ongoing	
[1] Cryogenic envelope supplied by Nexans. [2] Cryogenic envelope and dielectric supplied by Nexans.								

- Shorter lengths of insertion no tying back to existing EHV backbone system (VLI)
- Lower voltage benefit through cheaper auxiliary equipment
- Greater controlability with use of Phase Angle Regulator control of power flow (VLI)
- Expanded generator siting options because of lower voltage drop (VLI)
- Reduced electrical losses

Superconducting power cables (particularly VLI) do not have to be cost competitive on a stand alone basis. Economical benefits of the "grid solution" are of interest

Conclusion

- Different cable design concepts with their benefits and drawbacks are well understood
- Very low impedance characteristic of cold dielectric cables is of big interest to utilities
- Cable design tradeoffs driven by the specifications are to be managed
- Current ongoing projects enter the step from laboratory setups to grid installations
- The LIPA cable project is the first one on transmission voltage level so far

Thank you for your attention