

Fast Cycling Superconducting Magnets

P.Schnizer on behalf of the magnet group

GSI Darmstadt

p.schnizer@gsi.de

- The planned facility
- Superconducting magnets for the planned facility
 - fast pulsed synchrotron magnets
 - SIS 100
 - SIS 300
 - Storage rings / SuperFRS
 - other activities
- Conclusions

International Facility for Beams of lons and Antiprotons

SIS100 (Synchrotron 100 Tm):

- •"work horse"
- accelerates heavy ions/protons
- •fast extraction to SIS 200 or
- **RIB/Antiproton targets**

SIS300 (Synchrotron 300 Tm):

- •stretcher ring
- •accelerates heavy ions to high
- energies
- slow extraction

SuperFRS (Fragment Separator):

•analyses and separates secondary beams

CR (Collector Ring complex):

- collects secondary beams
 stochastic precooling of ions and
- antiprotons
- •storage of antiprotons

NESR (New Experimental Storage Ring):

electron cooling and storage of ions
in-beam experiments with RIB

HESR (High Energy Storage Ring):

•experiments with antiprotons

Key Parameters: Synchrotrons

Ring	Circum ference	Bending Power	Reference Energy	Special Features
SIS 100	1080 m	100 Tm	2.7 GeV/u U ²⁸⁺ 29 GeV protons	 fast pulsed superferric magnets (2 T and 4 T/s)
SIS 300	1080 m	300 Tm	34 GeV/u U ⁹²⁺	 fast pulsed superconducting cosθ magnets (6 T and 1 T/s)

Radioactive Ion Beams (RIB)

For storage ring experiments:

Fast extraction SIS100

For external target experiments:

- Slow extraction from SIS300
- Slow extraction from SIS100

Compressed Baryonic Matter (CBM)

- U73+ in SIS 100 – U92+ in SIS 300
- Slow Extraction from SIS300

Magnets for the Synchrotrons

SIS 100	Number of Magnets	Aperture (mm)	Magnet Length (m)	Max. Field / Max.Gradient	Max. Ramprate
Dipoles	120	110 x 55	2.6	2 T	4 T/s
Quadru-	162	120 x 63	0.6	34.2 T/m	73.4 T/m/s
poles		(pole radius:	1.0	36.7 T/m	
		40)	0.6	34.2 T/m	
SIS 300	Number of Magnets	Aperture (mm)	Magnet Length (m)	Max. Field / Max.Gradient	Max. Ramprate
Dipoles	120	80 (circular)	2.6	6 T	1 T/s
Quadru-	132	80 (circular)	0.6	93 T/m	15.5 T/m/s
poles			1.0	89 T/m	14.8 T/m/s

Superconducting Magnets for SIS 100

Nuclotron Dipole

- Collaboration: JINR (Dubna)
- Iron Dominated: window frame
- Maximum magnetic field: 2 T
- Ramp rate: 4 T/s
- Hollow-tube superconducting cable
- Two-phase helium cooling

Nuclotron-type Dipole – Loss Mechanisms

Measured Heat Releases to Helium (4K) Triangular cycle: 1Hz, 0-2T	Nuclotron-Dipole (1.4 m)	80KDP2 (1.4 m) (Yoke at 80K)	planned prototype (2.6 m)
Total (W/m)	44	11	
Yoke (W/m)	> 27	0	
Coil (W/m)	12	9	
Static Heat Release (W/m)	5	2	

- Coil (30%):
 - main contribution: wire magnetization
 - \Rightarrow reduction of filament size to 3.5 mm
- Yoke (70%):
 - magnetization losses in the central core
 - losses in the endparts due to longitudinal field components B_z

Nuclotron type cable development towards higher currents (BMBF funded)

 $I_{c \text{ strand}}$: 1400 A @ 2T,4. 46 K \rightarrow

photograph of a keystoned strand

Alternatives

C-spring

Pro:

•low friction factor

•low mech. tolerance requirements

Con:

- •no circular symmetry
- •Strand position undefined near slit
- •low Helium exchange

Spiral

Pro:

•good Helium exchange

•circular symmetry

Con:

•high friction factor (x 5 compared to Nuclotron)

•higher mechanical tolerances required

Nuclotron

Pro:

•well defined strand position

- •circular symmetry
- •low friction factor

Con:

•indirectly cooled strand

AC Losses along Magnet axis z

Z=0: Core edge

Temperature rise in the end part !

OPERA-3D calculations of the integral magnetic flux _ (z)

New endblocks

- <= iron yoke partition and cooling circuit
- thermometer

new 200mm endblock (actual test run)

Nuclotron-type Dipole – Loss Mechanisms

Measured Heat Releases to Helium (4K) Triangular cycle: 1Hz, 0-2T	Nuclotron-Dipole (1.4 m)	80KDP2 (1.4 m) (Yoke at 80K)	planned prototype (2.6 m) (based on present R&D status)
Total (W/m)	44	11	17
Yoke (W/m)	> 27	0	9
Coil (W/m)	12	9	6
Static Heat Release (W/m)	5	2	2

SIS 100 Dipole - Alternatives

Nuclotron Superferric Window-frame Dipole (cold bore, cryogenic pumping)

Superferric H-type design (warm iron, warm bore)

Study at BINP, Russia

Resistive

Requirements for SIS 100:				
Max. Field:	2 T			
Max. Ramp Rate:	4 T/s			
Field quality:	±6x10 ⁻⁴			
Aperture:	110x55mm ²			

Comparison sc and nc 100 Tm dipole

COSTS (M€)	SC	nc
PRODUCTION	36	37
OPERATING	8	45
TOTAL	<u>44</u>	<u>82</u>

based on:

- •248 dipoles (SIS 100 and beamlines)
- •20 years of operation, 6500h/ y
- •present status of the R&D
- •present aperture (55 x 110)
- •operation cycles mix
- present electricity costs

includes costs for

- •power supplies, quench detection and protection
- •cryogenic system
- •tests and operation crew

Vision of the final magnet (4K)

4K-iron Ceramic aperture spacer Laminated and horizontally cut endblocks Rogowski end profile Fully symmetric coil Homogenisation slits Coil ends restrained Stainless Steel end plates

Superconducting Accelerator Magnets: SIS 300

- RHIC dipole
- Collaboration with BNL
- Coil dominated: cosθ
- Maximum field: 3.5 T \Rightarrow 4 T
- Ramp rate: 70 mT/s \Rightarrow 1 T/s !!!
- Supercond. Rutherford cable
- One-phase helium cooling

R&D Goals for RHIC type dipole

- Reduce the effects due to the high ramp rate:
 - lower loss in wire, cable (core) and iron
 - better AC field quality
- Improve the cooling of the Rutherford cable
 - open Kapton insulation with laser cut holes
- Use collars to ensure longterm mechanical stability

Cable cross section

Dipole Parameters

RHIC dipole

Superconducting wire:

- NbTi-Cu (1:2.25)
- filament diameter 6 μ m
- twist pitch 13 mm
- no coating

Rutherford cable

no core

Coil

- phenolic spacer
- Cu wedges

Yoke

- Hc= 145 A/m
- 6.35 mm laminations

RHIC type dipole GSI 001

Superconducting wire:

- NbTi-Cu (1:2.25)
- filament diameter 6 μm
- twist pitch 4 mm
- Stabrite coating

Rutherford cable

 – 2 x 25µm stainless steel core

Coil

- stainless steel collar (G11 keys)
- G11 wedges

Yoke

- Hc= 33 A/m, 3.5% Silicon
- 0.5 mm laminations, glued

without

GSI001 QUENCH TESTS

Thermal time constant ~ 1 min.

by P. Wanderer

Calculated and measured losses for GSI 001

SIS 300 - Dipole Parameters

UNK Dipole

- 2 layer cosθ design
- 80mm bore \Rightarrow 100 mm
- 5.11 T
- 0.11 T/s

Goal: 6T, 1T/s

Study by Technopark Kurchatov (Kurchatov Institut Moscow, IHEP, Protvino): Such a magnet is feasible, but needs a lot of R&D !

- •Fast Cycling Superconducting magnets are an important part of the IAF.
- We made very good progress, but need more R&D!

Thanks to all members of the collaborations and the magnet group.!

R&D principles

Situation (when we started in 2000)

- small magnet group
- new field
- large variety of magnets
- tight R&D schedule and restricted budget

Consequences

- establish collaborations
- look for existing magnets with similar parameters
- start R&D for dipoles
- build model dipoles with existing material and toolings

 \Rightarrow saves time and money

Antiproton Physics

Calculated and measured gradients (rate dependent or eddy current terms)

by M.N. Wilson

by M.N. Wilson

the theory works pretty well!

good enough to design magnet cooling and refrigeration for the final project

Vision of the final magnet (iron at 80K)

