SOME FACTS ABOUT CIEMAT

Public Research Institution (OPI) dealing with Energy and Environment pertaining to the Ministry of Science and Technology (MICYT) through the State Secretariat for Scientific and Technical Policy

Annual budgeted expenses about 64 million euros

65% transferred from the State

Remaining revenues from R&D activities and technical services

Human Resources

1,200 workers about half of which have university degrees 30% civil servants 70% contracted

Femando Toral **CIEMAT PRESENTATION DEC, 9, 2003**

CIEMAT RESEARCH CENTERS

R&D ACTIVITIES AT CIEMAT

- ⇒ Renewable Energies
- ⇒ Fusion by Magnetic Confinement
- ⇒ Radiation Protection and Radiation Dosimetry
- ⇒ Materials Behaviour in Power Plants
- ⇒ Radioactive Waste Management
- ⇒ Environmental Behaviour of pollutants
- ⇒ Molecular and Cellular Biology
- ⇒ Combustion and Gasification Technologies
- ⇒ Computing and Communications Technologies
- ⇒ Experimental High Energy Physics
 - ✓ International collaborations at:
 - CERN
 - DESY: Mark-J at PETRA & TESLA500
 - NASA
 - ✓ Applied Superconductivity Lab. CIEMAT-CEDEX

Emando Toral CIEMAT PRESENTATION DEC, 9, 2003

PROJECT &	CHARACTERISTICS		
PARTICIPATION			
Tuning Quadrupole for the LHC (1989-1992) Design, Manufacturing Follow-up	Type of Magnet: Cos 20 Nominal Gradient: 120Tm ⁻¹ Nominal Current: 1600 A Maximum Field: 3.8T Magnetic Length: 720 mm Inner Bore: 56.3 mm		
Sextupole for the LHC (1992-1995) Design, Manufacturing Follow-up & Testing	Type of Magnet: Cos 30 Nominal Strength: 1600Tm ⁻² Maximum Current: 390 A Maximum Field: 2.23T Magnetic Length: 180 mm Inner Bore: 56.0 mm		
Octupole for the LHC (1993-1994) Design, Manufacturing Follow-up & Testing	Type of Magnet: Superferric Nominal Strength: 48000Tm ⁻³ Nominal Current: 230 A Maximum Field: 1.37T Magnetic Length: 150 mm Inner Bore: 56.0 mm		
Trim Quadrupole for the LHC (1997-2000) Design & Fabrication	Type of Magnet: Double Pancake Nominal Gradient: 110Tm ⁻¹ Nominal Current: 550 A Maximum Field: 3.7T Magnetic Length: 1190 mm Inner Bore: 56.0 mm N ^o of units: 2		
Current Leads for LHC Correctors (1998-2000) Design, Fabrication & Testing	Type of Leads: Gas Cooled+HTS Nominal Current: 600 A Maximum Losses to LHe: 60mW Type of HTS: BSCCO 2212 N° of units: 4		
Magnet Testing (1994-2000) Test Specifications & Execution	Type of Tests: Training Quench Propagation Optimum Precompression Gas-Cooled Current Leads Maximum Mag. Length: 300 mm Maximum Mag. Current: 1800 A Approx. N° of Mag. Tested: 20		
AMS II Detector (2000-2004) Design & Manufacturing Follow-up of a Power Supply	Type: Switch Mode Load: a 52H Superconducting Magnet Current: 450 A Voltage: 0 to 5 V Weight < 15 kg		

BACKGROUND IN ENERGY MANAGEMENT

PROJECT & PARTICIPATION	CHARACTERISTICS	
1 MJ Superconducting Magnetic Energy Storage SMES (1995-1996) Design of the magnet and the power converter and Manufacturing Follow-up	Stored Energy: 1 MJ Power: 500 MVA Current: 1000 A Type of magnet: Double Pancake Solenoid	
Fault Current Limiter (1998-2001) Design & Partial Tests	Type: Inductive with Hybrid Secondary Superconductor: YBCO 123 Rated Voltage: 380 V Limiting Current: 1000 A	
Flywheel Energy Storage for a Wind-Generator (1997-2002) Design & Fabrication of the electrical machine and power electronics	High speed Flywheel for a Stand- alone Wind Generator Maximum Speed: 30,000 rpm Energy: 4 MJ Power: 50 kW Drive: Switched Reluctance Machine Type of Flywheel: Carbon Fiber + Glass Fiber	
Flywheel Energy Storage for Railway Substations (2002-2006) Design & Fabrication of the electrical machine and power electronics	Low speed Flywheel for Power Levelling at Railway Substations Maximum Speed: 6,000 rpm Energy: 600 MJ Power: 5 MVA Drive: Switched Reluctance Machine	

CIEMAT COLLABORATIONS WITH TESLA500

	CHADACTEDISTICS		
	CHARACTERISTICS		
PARTICIPATION Design and Fabrication Study on the TESLA500 Superconducting Magnet Package (2000) Feasibility Study for the TESLA500 Technical Design Report	The TESLA500 Superconducting Magnet Package consists of: - Combined Magnet with a Quadrupole and two Dipoles - HTS Current Leads - BPM - Helium Vessel - Power Supply Study content: - Draft design - Fabrication procedures - Price estimate Spanish Contribution: 35,000 €	<image/>	
Fabrication of HTS Current Lead Prototypes for TESLA (2002-2003) Design, Fabrication & Partial Tests	Type of Leads: Normal Conducting + HTS Nominal Current: 100 A Maximum Losses to LHe: 25mW Type of HTc : BSCCO 2212 N ^o of units: 2 Spanish Contribution: 36,000 €		
Fabrication of Two Combined Magnet Prototypes (2002-2005)Design & Fabrication of the Magnet and the Ribbon Machine	One quadrupole: Nominal Current: 100 A Nominal Gradient: 60 T/m Two dipoles: Nominal current: 40 A Nominal field: 0.074 T Total Length: 626 mm Bore diameter: 90 mm N° of units: 2 Spanish Contribution: 200,000 €	combined quadrupolo TESLAG00 2 block coll design 040902 12.44	

iñi

MINISTERIO DE CIENCIA

Project Resources

Winding workshop

- A winding table for coils up to 2m long, using doublepancake technique
- ⇒ Vacuum impregnation facility
- ⇒ Curing furnace
- \Rightarrow Soon: A ribbon machine

Test Laboratory

CEDEX

- \Rightarrow One 1700A power supply
- Several power supplies up to 125A
- \Rightarrow Data acquisition systems
- ⇒ Instrumentation for magnets tests

Doctor Engineer	2
Engineer	1
Physicist	1
Technical Engineer	1
External collaborations	

Ciema Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas Fernando Toral CIEMAT PRESENTATION DEC, 9, 2003