SIXTH FRAMEWORK PROGRAMME

Structuring the European Research Area Specific Programme

RESEARCH INFRASTRUCTURES ACTION

Contract for an:

INTEGRATING ACTIVITY

implemented as

INTEGRATED INFRASTRUCTURES INITIATIVE

Annex I - "Description of Work"

Project acronym: CARE

Project full title: Coordinated Accelerator Research in Europe

TABLE OF CONTENTS

1.	Project objectives and summary
2.	Overall description and fundamental objectives of the I34
3.	List of Participants
4.	List of Activities
5.	Financial information for the whole duration of the project
6.	Estimated breakdown of the EC contribution per reporting period
7.	Management of the I3
8.	Description of each activity of the I3 (including its outline implementation plan)41
	8. N1 Activity N1: Electron Linear Accelerator Network (ELAN)
	8. N2 Activity N2: Beams in Europe for Neutrino Experiments (BENE)
	8. N3 Activity N3: High-Energy High-Intensity Hadron Beams (HEHIHB)65
	8. R1 Activity JRA1: Superconducting Radio Frequency (SRF)74
	8. R2 Activity JRA2: Charge production with Photo-Injectors (PHIN)109
	8. R3 Activity JRA3: High Intensity Proton Pulsed Injector (HIPPI)120
	8. R4 Activity JRA4: Next European Dipole (NED)
9.	Detailed implementation plan for the first 18 months period142
	9. N1 Activity N1: Electron Linear Accelerator Network (ELAN)
	9. N2 Activity N2: Beams in Europe for Neutrino Experiments (BENE)144
	9. N3 Activity N3: High-Energy High-Intensity Hadron Beams (HEHIHB)146
	9. R1 Activity R1: Superconducting Radio Frequency (SRF)148
	9. R2 Activity R2: Charge production with Photo-Injectors (PHIN)160
	9. R3 Activity R3: High Intensity Pulsed Proton Injector (HIPPI)161
	9. R4 Activity R4: Next European Dipole (NED)164
10	Financial information for the duration of the detailed implementation plan165

1. Project objectives and summary

The main objective of the **CARE** project is to generate a structured and integrated **European area in the field of accelerator research and related R&D**. The program includes the most advanced scientific and technological developments relevant to accelerator research for Particle Physics. It is articulated around 3 Networking Activities and 4 Joint Research Activities.

The aim of the Networking Activities is to foster and strengthen the European knowledge to evaluate and develop efficient and cost effective methods to produce intense and high-energy electron, proton, muon and neutrino beams as recommended by the European Committee for Future Accelerator (ECFA). They will carry comparative studies on the various techniques, establish collaborative and prioritised R&D programs aimed at improving the exiting infrastructures and technical roadmaps toward their longer-term evolution and the construction of new facilities of worldwide interest. The participants will integrate their infrastructures, establishing a European technological platform for accelerator research allowing one to develop joint R&D projects and to foster strong and effective collaborations.

The Joint research activities aim at developing critical and/or beyond the actual state-of-theart components and systems to upgrade the infrastructures. They include the developments of:

- Superconducting cavity and RF technology
- Photo-injector technology, in particular for two-beam acceleration technique
- Normal and superconducting structures for the acceleration of very high-intensity proton beams as well as challenging beam chopping magnets
- The technology for constructing very high magnetic field and high density currents magnets

Twenty two contracting participants and a large number of associated institutes (including industrial partners and SMEs) participate in this unprecedented integrating effort, including accelerator physicists involved in Nuclear Physics accelerators, Free Electron Lasers and Neutron Spallation sources.

Finally, in order to implement a strong and efficient dissemination plan, a Web-based platform has been developed from the site of the ECFA-European Steering Group for Accelerator R&D (http://esgard.lal.in2p3.fr).

2. Overall description and fundamental objectives of the I3

The CARE project represents an innovative and unique opportunity in Europe as it will involve almost all of the European expertise and know-how in accelerator physics and related technologies and would allow one to address most of the issues relevant to particle accelerators. Thus, it will provide an integrated service to the entire European particle physics community and could provide on the long-term an integrated service for other communities (such as Nuclear Physics, FEL, and Neutron Spallation) as well. The CARE project is considered as very high priority in Particle Physics by European Committee for Future Accelerator (ECFA).

The framework of CARE integrates the subjects, the infrastructures and the expertise.

- **D** The subjects
 - On-going and new studies on all types of used and planned accelerator will be integrated, in line with the recommendation and priorities set forward in the ECFA report on the "future of accelerator-based physics in Europe" (ECFA/01/213):
 - Electron linear accelerator and collider
 - Neutrino (muon) beams
 - High-energy/high-intensity proton accelerators

D The infrastructures

- ➢ It will include all the relevant infrastructures allowing one to develop an overall efficient R&D program for accelerators and establish the first step toward a European Technological Platform to carry research on accelerator. The proposed activities are articulated around:
 - Large Scale Facilities, including the existing or in construction state-of-the-art accelerators (CERN accelerator complex including LHC, DESY accelerator complex as well as those from LNF, RAL, PSI, GSI),
 - Large-scale accelerator test facilities (CTF at CERN, TTF at DESY)
 - Specialized large and medium size infrastructures allowing one to develop and test specific accelerator concepts and components (LNF, RAL, PSI, CEA/Saclay, CNRS-IN1P3/Orsay).

The following table shows the existing (or in construction) accelerator facilities located at the laboratories participating to the CARE project. The vast majority of these infrastructures are unique in Europe. A large number of them would be improved with the outcome of the CARE research activities.

Laboratory	Accelerator	Description
CCLRC-RAL	ISIS	Accelerator complex for the neutron and muon facility
CERN	PS, SPS,	Proton accelerator complex
	LHC	
	CNGS	Neutrino Beam
	CTF3	Two beams electron linear accelerator test facility
DESY	PETRA,	Electron and proton accelerator complex
	HERA	
	TTF, X-FEL	Electron superconducting linear accelerator test facility
		and free electron laser
FZR	ELBE	Electron linear accelerator
GSI	SIS, ESR	Heavy ion accelerator complex
INFN-LNF	DAPHNE	Electron-Positron collider
PSI	SINQ	Accelerator complex for the neutron and muon facility

Similarly, the next table shows the existing (or in construction) specialized test facilities relevant for the CARE project

Laboratory	Facility	Description						
CCRLC	"Unnamed"	Cryogenic facility for mechanical measurement						
	IPHI	3 MeV High Intensity Proton Injector						
	RF stand	700 MHz RF test stand for pulsed SC cavity testing						
		(1 MW)						
CEA	Cryholab	Horizontal Cryogenic test stand						
	W7X	Superconducting magnet test facility						
	"Unnamed"	Cryogenic facilities for thermal, mechanical and						
		electrical characterization						
	Test Beam	3 MeV test stand for chopping tests and beam tests						
CERN	RF stand	352 MHz RF test stand for cavity testing (120 kW)						
	FRESCA	Superconducting wire and cable test facility						
CNRS-	NEPAL	Test stand with photo-injector						
Orsay	"Unnamed"	Coupler test laboratory						
	CHECHIA	Horizontal Cryogenic test stand						
DESY	"Unnamed"	Superconducting Magnet Test Facility						
	PITZ	Photo-injector test facility						
FZJ	"Unnamed"	Superconducting cavity test stand						
GSI	"Unnamed"	Superconducting Magnet Test Facility						
160	UNILAC	Accelerator for beam tests and diagnostics tests						
INFN-Ge	"Unnamed"	Superconducting wire test facility						
INFN-Mi	"Unnamed"	High-Field Superconducting wire test facility						

D The expertise

➢ Most (if not all) European expert involved in the conception, design, development and construction of accelerator for particle physics (and to a large extend for nuclear physics and advanced light sources such as FEL) are participating to the CARE project.

As a consequence, the outcome of the CARE project will

- Considerably strengthen the European expertise and know-how in this field far beyond the sole capacity of the largest research centres (CERN and DESY) to carry forefront accelerator R&D.
- Help many European Institutes and Universities develop their competences in contact with the best experts in Europe, ensuring the long-term sustainability of accelerator R&D. Many of the activities in CARE are at (or beyond) the state-of-the-art technology.
- □ Further the contact and the involvement of industry in R&D activities (12 companies are participating to the CARE activities).
- □ Establish the basic development work allowing the future strategic decisions to be made on sound technological basis. CARE will provide the necessary technological inputs to ECFA.
- □ Identify the common issues relevant to other fields, contact these communities and propose common activities

2.1 The CARE activities and their integration

The *three Networking Activities (NA)* aim at fostering and strengthening the European knowledge to generate, evaluate and develop efficient and cost effective methods to produce intense and high-energy electron, proton, muon and neutrino. They will carry comparative studies on the various techniques, establish collaborative and prioritise R&D programs aimed at improving the existing infrastructures and at establishing technical roadmaps toward their longer-term evolution and the construction of new facilities of worldwide interest.

The participants will provide access to unique and indispensable infrastructures establishing the European technological platform for accelerator research allowing one to develop Joint Research Projects and to foster strong and effective collaborations.

The following table shows the different type of particle beams, infrastructures and projects and their relevance for the 3 Networking Activities (N1, N2, N3).

Networking Activities	Existing or in construction large scale accelerators	Test facility or medium size facilities	Specialized test facilities	Accelerator Project
N1: Electron Linear accelerator Network		TTF(DESY) CTF(CERN)	Photo-Injector test facilities	TESLA, CLIC
N2: Beams for European Neutrino Experiments (superBeam, βBeam, μ-beam)	CNGS(CERN)	ISIS(RAL) SINQ(PSI) IPHI(CEA)	(CNRS-Orsay,DESY) "Cryolabs" (CEA,CERN,DESY,FZJ) "Super conducting magnet test stations" (CCLRC,CEA,CERN,DESY,GSI,INFN-	SPL, NuFact
N3: High-Energy High- IntensityHadron Beams	LHC(CERN) HERA(DESY) SIS (GSI)	IPHI(CEA)	Ge,INFN-Mi)	SuperLHC, VLHC

The *four Joint Research Activities (JRA)* aim at developing critical or beyond the state-ofthe-art components and systems allowing one to upgrade the infrastructures. They include

- **SRF**: The development of the superconducting cavity technology for the acceleration of electrons with gradient exceeding 35MV/m and the development of the subsequent necessary superconducting RF technology.
- **PHIN**: An R&D program for improving the technology of photo-injectors, in particular to match the severe requirements necessary for demonstrating the 2 beam acceleration concepts.
- **HIPPI**: The integrated developments of normal and superconducting structures for the acceleration of very high-intensity proton beams as well as challenging beam chopping magnets.
- **NED**: The development and mastering of the technology for reaching very high magnetic field (>15T) and high current densities (>1500A/mm²).

All together 22 participants and a number of associated laboratories or institutes (including 12 industrial companies) will participate in these activities establishing an unprecedented integrating effort in this field.

The Joint Research Activities are relevant and of extreme importance for the networking activities. The following table shows this relation and illustrates the overall integration of the CARE program.

NA JRA	Accelerato	ron Linear or Network AN)		for Europea Experiments (BENE)	N3: HE/HI Hadron Beams (HEHIHB)	
Existing projects <i>Future projects</i>	TTF CTF TESLA CLIC		CNGS SuperBeams	β–beams	ISIS, SINQ μ–beams	HERA, SIS, LHC <i>SLHC/VLHC</i>
SRF	X				Х	
PHIN	Х	Х				
HIPPI			X	Х	Х	Х
NED	Х	Х			Х	Х

In fact the R&D projects are not only essential to the improvement of the existing infrastructures and the development of upgrade programs but will also establish the foundation for new ones. Conversely the existing infrastructures are necessary to understand beam dynamics and properties, to validate ideas through dedicated machine developments and to test prototypes. The Research and Development carried in the JRAs will be presented and discussed in the networking activities. The achievements in the JRAs are likely to influence the studies in the Networking Activities, leading to new ideas, which in turn will generate new research directions. General meetings, common workshops and Dissemination Board activities will ensure an effective exchange of information. Furthermore, specialized joint workshops will be organized when several aspects of networking and joint research activities are common (ex. beams diagnostics and instrumentation, high field magnets needs for accelerators, etc...)

Accelerator Research requires access to several types of infrastructure. Since most of the interested parties in Europe are members of CARE, the participants decided that a formal request for transnational access was not necessary at this stage and that an agreement amongst the partners to provide the necessary access allowing one to carry the proposed program was sufficient. At a later stage, the management of CARE might set up a study group to investigate whether a proposal for transnational access to infrastructures for accelerator R&D would be useful.

2.2 Integrated provision of infrastructure related services

2.2.1. Networking activities

The main services provided by the research infrastructures under consideration in CARE are:

- To develop the most advanced accelerators for carrying frontier research in physics
- To provide accelerator beam time for research programs and technical developments
- To develop and provide the most advanced test infrastructures
- To provide a centre of excellence where the smaller institutes and universities can find support for enhancing their own expertise and know-how.

The three networks in their ensemble will integrate a very wide spectrum of research and development activities in accelerator science. They will evaluate and compare different methods to reach higher intensities and energies with several types of probes (electron,

proton, muon and neutrino). The CARE networking activities will improve the coordination of those efforts done in many laboratories, institutes and universities in Europe, including industrial companies. Globally, these efforts aim at

i. Increasing the understanding of accelerator science and enlarging the pool of expertise

In the networks, a lot of exchange of information and knowledge will take place between experts as well as between experts and newcomers in the field. The direct consequences will be an increase of the general level of competence and a high quality training of the individuals starting to work in the field. The encouragement to make and publish thesis works on accelerator topics and the gain of skills about accelerator operation will directly result from the team-works done and from the access to R&D infrastructures. The increase of the pool of experts and the level of expertise (such as for beam dynamics) will lead to the improvement of the operation of the accelerators (better optics and beam controls leading to better beam stability and properties). An additional expected effect of these activities is to attract young people into accelerator physics and technology, and to provide them with the kind of environment, which instigates them to continue in this line of activities. The networks are providing forums for information exchange for the European Industries interested to provide accelerator components as well as, at the other end of the chain, for the High Energy Physics community looking for inputs to plan its activities and define its priorities. To promote even further the former aspect, dedicated Industry Days will be organized.

ii. Establishing centralized technical database and code repositories

Networking activities will set up databases on test equipments and specific specialized technical information. Convenient and centralized access to this information will make it easier for the users to carry their research and development and eventually access to costly test equipments. Similarly, easily accessible and well documented software for studying beam dynamics and transport will be very useful to the community.

iii. Comparing different options for improving existing facilities and for designing new ones

A substantial part of the networking activities is aimed at defining the optimal technical choices and the essential R&D efforts to be undertaken. After investigating the technical limitations of present research accelerators, the networks will explore and propose ways to surpass their present performance. Most of the ideas and related improved techniques, which will be addressed, are likely to be used to improve the operation and/or upgrade the accelerators (for example at CERN, DESY, LNF, GSI, and RAL). Furthermore, some of these ideas will be immediately experimented in the accelerator test facilities (such as TTF and CTF), not only for validating them but also for improving these infrastructures, which are indispensable to make progress on accelerator science and making possible the construction of new accelerators.

iv. Stimulating, discussing and evaluating novel acceleration techniques and developing common R&D programs

The proposed program of activities will also allow the investigation of the lines of accelerator R&D, which are already recognized as important for the future, such as linear collider studies. They will serve to establish and discuss what has to be dealt with and tested before any conceptual and/or technical design could be suggested. These activities will also provide the necessary input for defining and establishing a consistent work-plan aiming at developing novel techniques of acceleration likely to open new ways towards very high accelerating-gradients and consequently beam-collision energies. Indeed for the first time in Europe, a more global and coordinated approach will be carried out, targeted

toward novel acceleration techniques. These studies will be imbedded within other approaches. The interaction between the different techniques is likely to be very stimulating and productive. In particular, coordination toward an integrated experiment to demonstrate GeV acceleration in 10cm will be set up, possibly leading to the proposal for a design study of a European test facility. These activities might prepare the long-term evolution of the European infrastructures.

A direct impact can be expected on the services provided by the research infrastructures from the four points above. In summary, it should manifest itself in

- Better operation of the existing infrastructures thanks to a better exchange of expertise and knowledge and by putting in common most advanced beam codes on particle acceleration, and transport. A code maintenance and distribution team will be formed.
- Better reliability and better beam properties leading to improved access
- Altogether more running time and better experimental condition can be expected, i.e. a better service provided by the infrastructure.
- More efficient and coordinated use of the available infrastructure for accelerator R&D
- Higher intensity and/or energy beams leading to improved research opportunities
- Prepare the long-term evolution of the European infrastructures

Finally, the expected additional resources coming from the European Commission will incite more people and more laboratories to work in and contribute to these activities, which will in turn induce an increase of the investments by local authorities on accelerator development and test infrastructures. These resources will also stimulate the participation of EU industrial partners into the projects and the initiatives to lower the costs of basic accelerator components.

2.2.3 Joint research activities

The proposed joint research activities cover the most critical and pressing issues, which need to be addressed as of today for producing better (higher quality, higher intensity, higher energy) beam for particle physics. Mastering the technologies, which are proposed, will lead to maximizing the impact on the related infrastructures. This is best summarized in the preceding table, which shows the relevance of the 4 Joint Research Activities with respect to the infrastructures. It is clear from this table that for each infrastructure several JRAs are useful in contributing to optimise the overall impact.

As an example of how the ensemble of JRAs may maximise the potential of a given infrastructure, we could consider the ensemble of the three JRAs, which have an impact on TTF/TESLA. The importance of JRA1 to TESLA has already been discussed above. JRA2 on photo-injectors is also of direct relevance to TTF/TESLA and TTF-VUV laser. Linear colliders and coherent light sources both require high brightness-low emittance electron beams in order to achieve the *luminosity* (LC) and *brilliance* (FEL) necessary for their exploitation. As a result they both employ photo-injector guns as an electron source, which is the very subject of JRA2. The application of JRA4 to TESLA is the very specific need for strong super-conducting magnetic elements, which find an application in the so-called *final focus* region upstream of the interaction point of collider.

In the very same way, a set of the proposed JRA will maximize the impact for producing intense Neutrino Beams and High-energy/High-Intensity Hadron Beams as they address series of most critical issues relevant to such infrastructures.

In summary, the integrated provision of the infrastructure related services is ensured owing to

- > The CARE participants and their commitment (i.e. the vast majority of relevant infrastructures for accelerator research are participant of CARE)
- The CARE management and the coordination of subprojects, which are undertaken by senior staff physicists of the large infrastructures laboratories (CEA, CERN, CNRS-Orsay, DESY, INFN-LNF)
- The Governing Board, in which representatives of the large infrastructures laboratories are present
- > The program of the Networking and Joint Research Activities, which integrates and optimises the use of the equipment and technical resources.
- **2.2.4** Impact on the level of performance of the infrastructures concerned.

The CARE program will directly allow one to raise the level of performance of the infrastructures.

- > The program of the Networking and Joint Research Activities, which integrates and optimises the use of the equipment and technical resources.
- > Networking Activities will compare and determine the best ways to upgrade the infrastructures both on the medium-term and on the long-term, for example with:
 - An increase of luminosity of LHC by a factor of ten and of its energy by about a factor of two
 - An upgrade of the CERN complex to increase very significantly the neutrino flux
 - An improved access to technical information on the infrastructures through specific technical databases
- Joint Research Activities will design, construct and test prototypes for accelerator components, which will be directly or indirectly used to improve the infrastructures. For example, on could expect
 - A 50% increase of the energy of TTF and better operation of the facility (better stability, efficiency and beam properties)
 - An upgrade of the CTF complex to demonstrate the 2 beam accelerator concept
 - An increase of a factor 2 on the neutrino flux to Gran Sasso,
 - A very significant increase of the proton flux for the fixed target experiment at CERN both for particle physics and nuclear physics with ISOLDE.
 - A more robust operation of the LHC and
 - The possibility to increase its luminosity and, on a longer-term, its energy

In summary, a very significant increase of the performance of the European infrastructures for particle physics and for accelerator research in general is expected.

2.3 Long term sustainability and structuring effect

As shown above, one of the main objectives of the CARE project is to structure the European area on accelerator research. The prospects to achieve such an ambitious goal are rather bright. This optimism is based on the fact that the entire particle physics community adheres to and supports this initiative (even at the worldwide level with non-EU participation and the support of the International Committee for Future Accelerator). Indeed,

- 1. All parties have a strong interest, motivation and commitment to CARE as it allows them to both strengthen their individual and collective expertise on the long-term.
- 2. The structure set in place will allow both extensive communication and wide dissemination of knowledge to take place, which is likely to continue after the completion of the CARE program.
- 3. A European Steering Group for Accelerator R&D (ESGARD), which includes representatives from all major high-energy infrastructure laboratories, has been set up to oversee and monitor the European accelerator R&D activities relevant for particle physics. The foundation of this committee can be considered already as a first step toward ensuring the long-term sustainability of the collaborative effort put in place for CARE. It can be partly attributed to FP6. Discussions are underway to expand it to other fields such as Nuclear Physics, Free Electron Laser. This committee will launch other initiatives such as Design Studies over the next years.
- 4. Most Joint Research Activities involves trans-field collaboration as well as industrial partnerships. They are the seed for extending or generating future collaborations.
- 5. CARE offers an ideal framework for establishing specific collaborative arrangements. Examples are already on their way, such as the IPHI project and a joint venture between industrial partners on the development of high performance superconductor cable. It is reasonable to expect that more such initiatives will be triggered, as people will collaborate more closely.
- 6. Several proposals for common European test platform are to be expected from the networking activities (for example: a Target Test Area and a Collector Test Facility in N2)
- 7. Most of the Joint Research Activities are likely to lead to collaborative agreements to upgrade existing infrastructure (TTF, CTF, CERN proton injector are good examples). They may even in some cases be the seed for the construction of new infrastructures. Finally, CARE will offer an ideal framework for developing the concept of Global Accelerator Network.

Overall the CARE project is promising to establish a unique and durable interaction

- Amongst European accelerator physicist including connections with non-European partners
- Between accelerator and particle physicists
- Between different research field
- Between researchers and industrial partners

CARE will ensure the emergence of new ideas, new projects and new collaborations in a coordinated way. Hence, it will provide all the ingredients for the long-term sustainability of the collaborative effort in the field of accelerator research, which it has initiated

3. List of Participants

The legal entities of the participants, the associated institutes and the associated industrial partners are listed in the following tables:

Participant number	Organisation (name, city, country)	Short name	Date enter project	Date exit project	Short description (i.e. fields of excellence) and specific roles in the consortium (* indicates work package responsibilities)
1	Commissariat à l'Energie Atomique, Paris, France	CEA	start of project	end of project	 <i>Fields of excellence</i>: High Energy and Nuclear Physics, Research, Development, Construction and operation of Particle Accelerator (Beam dynamics, Superconducting RF Technologies, High Magnetic Field technologies), Computing, remote operation systems <i>Specific participation in:</i> N1*, N2*, N3, JRA1*, JRA3*, JRA4* <i>Specific Responsibilities:</i> General coordinator, coordinator for management of CARE and JRA4
2	Uni. Catholique, Louvain la neuve, Belgium	UCLN	start of project	end of project	<i>Fields of excellence</i> : High Energy and Nuclear Physics, Research, Development, Construction and operation of Particle Accelerator (ECR ion sources, cyclotrons, radioactive targets and radioactive beams) <i>Specific participation in</i> : N2
3	Centre National de Recherche Scientifique Paris, France	CNRS	start of project	end of project	 <i>Fields of excellence</i>: High Energy and Nuclear Physics Accelerators and Experiments, Construction and operation of Particle Accelerators and electron sources, Superconducting accelerators (cavities, couplers), neutrino horns, computing. Lasers and Plasmas for new techniques of acceleration <i>Specific participation</i> in: N1*, N2, JRA1*, JRA2*, JRA3* coordinator for N1 and JRA1
	CNRS-IN2P3-LAPP- ESIA, Annecy-le-Vieux, France	CNRS- LAPP	start of project	end of project	<i>Fields of excellence</i> : Active alignment, instrumentation and simulation <i>Specific participation</i> in: N1
	Centre d'Etude Nucléaire de Bordeaux Gradignan Bordeaux, France	CNRS- CENBG	start of project	end of project	Fields of excellence: Neutrino experiments Specific participation in: N2
	CNRS-IN2P3-LPSC Grenoble, France	CNRS- LPSC	start of project	end of project	Fields of excellence: Ions sources. Accelerator design, construction and operation (GENEPI accelerator, IPHI collaboration). Specific participation in: N2, JRA3*
	CNRS-IN2P3-Lyon, Lyon, France	CNRS- Lyon	start of project	end of project	Fields of excellence: Neutrino Physics and experiments Specific participation in: N2

Participant number	Organisation (name, city, country)	Short name	Date enter project	Date exit project	Short description (i.e. fields of excellence) and specific roles in the consortium (* indicates work package responsibilities)
	CNRS-IN2P3-Orsay Orsay, France	CNRS- Orsay	start of project	end of project	<i>Fields of excellence</i> : RF guns, accelerator construction, room temperature and super-conducting cavities, RF power couplers, beam simulations, analytic modelling, and electromagnetic simulations. <i>Specific participation</i> in: N1*, JRA1*, JRA2*
	Lab Phy Gaz Plasmas Orsay, France	CNRS- LPGP	start of project	end of project	<i>Fields of excellence</i> : Laser beat-wave, wake-field for accelerating electrons. Beam plasma interaction at high currents. <i>Specific participation</i> in: N1*
	Laboratoire de Chimie Physique, Orsay, France	CNRS- LPCO	start of project	end of project	<i>Fields of excellence</i> : Photo-cathode production and preparation, lasers, RF source, high-charge and short pulse photo-injector <i>Specific participation</i> in: N1
	Centre Phy. Théo. Ec. Polytech. Palaiseau Palaiseau, France	CNRS- CPHT	start of project	end of project	<i>Fields of excellence</i> : Simulation of laser-plasma interaction <i>Specific participation</i> in: N1
	Lab. Optique Appliquée, Palaiseau, France	CNRS- LOA	start of project	end of project	<i>Fields of excellence</i> : lasers, plasmas, plasma-acceleration, charged-particle production <i>Specific participation</i> in: N1, JRA2
	Ecole Polytechnique Palaiseau, Palaiseau, France	CNRS- LULI	start of project	end of project	<i>Fields of excellence</i> : Generation of very intense laser beat-wave, wake field. Particle generation and acceleration of electrons. <i>Specific participation</i> in: N1
	CNRS Université Paris 6&7 Paris, France	CNRS- LPHNE	start of project	end of project	Fields of excellence: neutrino physics Specific participation in: N2
4	Gesellschaft fur Schwerionenforschung, Darmstadt, Germany	GSI	start of project	end of project	<i>Fields of excellence</i> : Nuclear, atomic, plasma, and applied physics experiments with heavy ion beams, dynamics of high current beam transport and acceleration, development, design, construction and operation of heavy ion sources, linear and circular accelerators, storage rings, stochastic and electron cooling of stored beams, remote accelerator controls, computing, networking. <i>Specific participation</i> in: N2, N3, JRA3*
5	Institut fuer Angewandte Physik Frankfurt University Frankfurt, Germany	IAP-FU	start of project	end of project	<i>Fields of excellence</i> : Linear Ion Accelerators, Volume Ion Sources, Low Energy Beam Transport, RFQ Development, Room Temperature and Superconducting Drift Tube Linac Development, Beam Optics and Beam Dynamics Computations <i>Specific participation</i> in: JRA3

Participant number	Organisation (name, city, country)	Short name	Date enter project	Date exit project	Short description (i.e. fields of excellence) and specific roles in the consortium (* indicates work package responsibilities)
6	Deutsches Eletronen Synchrotron Hamburg, Germany	DESY	start of project	end of project	<i>Fields of excellence</i> : Development, construction and operation of Particle Accelerators (linear accelerators, synchrotrons and storage rings for electrons, positrons and protons) for High Energy Physics and Synchrotron radiation sources, Superconducting Cavities, Superconducting Magnets, R&D on Linear colliders and Free Electron Lasers, Accelerator Controls, Computing, Networking, Video Communication Tools, Experience with far remote operations of the Tesla Test Facility and the Fermilab Photo-injector
					Specific participation in:N1*, N3, JRA1*Specific Responsibilities:coordinator for JRA1
7	Forschungszentrum Jülich Jülich, Germany	FZJ	start of project	end of project	<i>Fields of excellence</i> : Medium energy physics accelerators and experiments, reliability of operation; polarized protons; stochastic cooling, electron cooling; electron beam welding; remote accelerator control and automation, design of superconducting accelerating structures, design of high intensity and high energy accelerators
					Specific participation in: N1, N2, JRA3
8	Technical University München, Germany		TUM start of project	end of project	<i>Fields of excellence</i> : Long term expertise in the field of neutrino <i>and muon physics</i> and experiments. It will contribute to the general steering and studies of the PHYSICS potential of future long baseline experiments. The studies aim at guiding the exploration, planning and construction of conceivable set-ups by identifying the capabilities and the crucial components and limitations.
					Specific participation in: N2
9	Forschungszentrum Rossendorf, Germany	FZR	start of project	end of project	<i>Fields of excellence</i> : Design and construction of intermediate energy accelerator, photo-injectors, photocathode for SC RF gun, synchrotron radiation source, Free Electron Laser, ELBE accelerator infrastructure.
					Specific participation in: N1, JRA2*
10	Istituto Nazionale di Fisica Nucleare Frascati, Italy	Sucleare INFN sta	start of project	end of project	<i>Fields of excellence</i> : High Energy and Nuclear Physics Accelerators and Experiments, Construction and operation of Particle Accelerators and Colliders, Accelerator Controls, Computing, Networking, Synchrotron Radiation Sources and Experiments, Astroparticle physics.
			1 9	L J	Specific participation in:N1*, N2*, N3, JRA1*, JRA2*, JRA3*, JRA4*Specific Responsibilities:coordinator for N2 and JRA2
	INFN Bari Bari, Italy	INFN- Ba	start of project	end of project	<i>Fields of excellence</i> : Neutrino physics, hadroproduction data, muon cooling studies <i>Specific participation</i> in: N2

Participant number	Organisation (name, city, country)	Short name	Date enter project	Date exit project	Short description (i.e. fields of excellence) and specific roles in the consortium (* indicates work package responsibilities)
	INFN Frascati, Frascati, Italy	INFN- LNF	start of project	end of project	 <i>Fields of excellence</i>: High Energy and Nuclear Physics Experiments, Construction and operation of electron and positron Particle Accelerators and Colliders, Beam Dynamics, Accelerator Diagnostics and Controls, Computing, Networking, Synchrotron Radiation Sources, FEL. <i>Specific participation</i> in: N1*, N2, N3, JRA1*, JRA2* Specific Responsibilities: coordinator for JRA2
	INFN Genoa, Genoa, Italy	INFN- Ge	start of project	end of project	<i>Fields of excellence</i> : Design of superconducting magnets. Finite element analyses. Electrical transport measurements on superconducting wires and cables. AC loss measurements on superconducting devices. <i>Specific participation</i> in: N2, N3, JRA4
	INFN Gran Sasso, L'Aquila, Italy	INFN- GS	start of project	end of project	<i>Fields of excellence</i> : Neutrino physics, main exploitation laboratory of the CNGS and of future facilities. <i>Specific participation</i> in: N2
	INFN Legnaro, Legnaro, Italy	INFN- LNL	start of project	end of project	<i>Fields of excellence</i> : SRF accelerator design and construction (ALPI). Chemistry and Electrochemistry Material surface treatments; Plastic deformation of materials and forming technology; Clean room (HPR and mounting); Thin film technology and PVD machine construction; Non destructive evaluation techniques, in particular flux gate magnetometry.
	INFN Milano, Milano, Italy	INFN- Mi	start of project	end of project	<i>Specific participation</i> in: N1, N2, JRA1* <i>Fields of excellence</i> : Design, construction and test of superconducting (SC) cavities for electrons and protons and of SC magnets for accelerators and detectors. High current proton beam dynamics; cryostat and cryomodule design and construction; photocathode and laser for high brightness photoinjector; SC cable and material low temperature characterization; SC magnet protection system design, and test; accelerator remote operation (GAN). Robust electron sources and laser pulse shaping.
	INFN Napoli, Napoli, Italy	INFN- Na	start of project	end of project	Specific participation in:N1, N2, N3, JRA1*, JRA2, JRA3*, JRA4*Fields of excellence:Neutrino physics and beams, hadroproduction data, cooling studies. Long term expertise in theoretical and experimental accelerator physics.Specific participation in:N2, N3 coordinator for N3
	INFN Padova, Padova, Italy	INFN- Pa	start of project	end of project	<i>Fields of excellence</i> : Neutrino physics and beams, hadroproduction data, muon cooling studies <i>Specific participation</i> in: N2*
	INFN Pisa, Pisa, Italy	INFN- Pi	start of project	end of project	Fields of excellence: Neutrino physics, phenomenology and theory Specific participation in: N2

Participant number	Organisation (name, city, country)	Short name	Date enter project	Date exit project	Short description (i.e. fields of excellence) and specific roles in the consortium (* indicates work package responsibilities)
	INFN Roma 2, Roma, Italy	INFN- Ro2	start of project	end of project	<i>Fields of excellence</i>: SC Cavity fabrication R&D, accelerator instrumentation and controls, computing and networking.<i>Specific participation</i> in: N1, JRA1
	INFN Roma Tre, Roma, Italy	INFN- Ro3	start of project	end of project	<i>Fields of excellence</i> : Neutrino physics, hadroproduction data, muon cooling studies <i>Specific participation</i> in: N2
	University of Salerno, Salerno, Italy	INFN- Sal	start of project	end of project	Fields of excellence : Relevant beam dynamics expertise: Impedance estimates in accelerator structures. Single- and multi-bunch beam instabilities. Further developments and application of analytic estimates and simulation codes will be used to characterise the impedance, and to study intensity limitations and ultimate performance of future High-Energy/High-Intensity Proton Accelerators, such as the LHC and its injectors, including beam dynamics with barrier buckets. Specific participation in: N3
	INFN Torino, Torino, Italy	INFN- To	start of project	end of project	Fields of excellence: Neutrino physics, phenomenology and theory Specific participation in: N2
	INFN Triestre, Triestre, Italy	INFN- Tr	start of project	end of project	<i>Fields of excellence</i> : Neutrino physics, hadroproduction data, muon cooling studies <i>Specific participation</i> in: N2
11	Twente University Enschede, Netherlands	TEU	start of project	end of project	<i>Fields of excellence</i> : Theoretical and experimental research on superconducting wire and cable, development of superconducting demonstration devices (NbTi, Nb3Sn and HTS), experience on design and manufacture of Nb3Sn dipole magnet models. Development for photo-cathodes and photo-injectors. <i>Specific participation</i> in: N1, N3, JRA2, JRA4*
12	Technical University Lodz, Poland	TUL	start of project	end of project	<i>Fields of excellence</i> : Full-custom design and HDL synthesis of modern ASIC-VLSI circuits, Data acquisition and processing systems, Control systems, power electronics, hardware-software code design of digital systems, software tools for system design and simulation. <i>Specific participation</i> in: N1, JRA1
13	The Andrzej Soltan Institute for Nuclear Studies Otwock-Swierk, Poland	IPJ	start of project	end of project	 Fields of excellence: High Energy and Nuclear Physics, Accelerator Physics and Technology (modelling of beam dynamics, bunching etc., design of accelerator parts, power supplies etc.), Plasma Physics and Technology (plasma diagnostics and techniques for material engineering, e.g. UHV-arc deposition of superconductor layers etc.) Specific participation in: N1, JRA1

Participant number	Organisation (name, city, country)	Short name	Date enter project	Date exit project	Short description (i.e. fields of excellence) and specific roles in the consortium (* indicates work package responsibilities)
14	University of Technology, Institute of Electronic Systems Warsaw, Poland	WUT-ISE	start of project	end of project	<i>Fields of excellence</i> : Analog digital and mixed electronic systems and instrumentation, microwave and optical/photonic circuits and systems, microprocessor and computer and software engineering, distributed large and multichannel measurement systems, multi-gigabit optical links and networks, FPGA/DSP systems design, Internet engineering, image processing systems, neural networks and fuzzy systems <i>Specific participation</i> in: N1, JRA1
15	University of Technology Wroclaw, Poland	WUT	start of project	end of project	Fields of excellence : Mechanical Engineering, Refrigeration and Cryogenics, Research, Development, Construction and Commissioning of Cryogenic Systems (modeling of cooling systems and refrigerators, heat transfer and material thermal properties, flow calculations, modeling of magnet resistive transition thermo hydraulics etc.)
16	Consejo Superior de Investigaciones Cientificas, Madrid, Spain	CSIC	start of project	end of project	Specific participation in: N3, JRA4 Fields of excellence: High energy experiments, accelerator studies, superconducting magnets, power supplies Specific participation in: N1, N2
	Univ. of Barcelona, Barcelona, Spain	UBa	start of project	end of project	Fields of excellence: Experimental neutrino physics Specific participation in: N2
	CIEMAT, Madrid, Spain	CIEMAT	start of project	end of project	Fields of excellence: Design and fabrication of superconducting magnets Specific participation in: N1
	Universidad Autonoma de Madrid Madrid, Spain	UAM	start of project	end of project	<i>Fields of excellence</i> : Recognized leadership in the field of theory and phenomenology of neutrinos. <i>Specific participation</i> in: N2
	Lab. of Industr. Electron. & Instrum. Uni. Valencia, Valencia, Spain	LEII	start of project	end of project	Fields of excellence: Design of power supplies Specific participation in: N1
	University of Valencia Valencia, Spain	IFIC	start of project	end of project	<i>Fields of excellence</i> : Design optics, modelling of machine imperfections and beam based measurements <i>Specific participation</i> in: N1, N2

Participant number	Organisation (name, city, country)	Short name	Date enter project	Date exit project	Short description (i.e. fields of excellence) and specific roles in the consortium (* indicates work package responsibilities)
17	European Organization for Nuclear Research Geneva, Switzerland	earch CERN	start of project	end of project	<i>Fields of excellence</i> : High energy Physics Accelerators and Experiments, Nuclear Physics accelerators including heavy ions and antiproton decelerator, Superconducting Cavities, Superconducting Magnets, Accelerator Controls, Computing, Networking, Video Communication Tools, Linear colliders, Photocathodes, Neutrino Factories, High Intensity Proton Machines, Ion Sources
					Specific participation in N1*, N2*, N3*, JRA2, JRA3, JRA4*Specific Responsibilities:coordinator for N3, JRA3
18	Université de Genève, Genève, Switzerland	UNI-GE	start of project	end of project	<i>Fields of excellence</i> : A consortium of physicists from Swiss Universities contributing long-term expertise in the field of neutrino physics, experiments & beams (design, detailed simulation, operation and analysis of their data), expertise in horn technology and in the field of intense low energy muon beams and leadership in the experimental studies of muon ionisation cooling. It will contribute to the general steering and to the PHYSICS, TARGET, HORN, COOLING WPs.
					Specific participation in: N2
19	Paul Scherrer Institute Villingen, Switzerland	PSI	start of project	end of project	<i>Fields of excellence</i> : Development, construction and operation of electron and proton accelerators (linear accelerators, synchrotrons, storage rings and cyclotrons) for synchrotron radiation, nuclear, atomic and applied physics experiments. Development and operation of (digital) feedback systems for particle beam stabilization and RF-control. Research and development of accelerator instrumentation and data processing electronics.
					Specific participation in: N1, N2, N3, JRA1
20	Council for the Central Laboratory of the Research Councils Oxfordshire & Daresbury,United	CCLRC	start of project	end of project	<i>Fields of excellence</i> : High Energy Physics Accelerators and Experiments, proton accelerators, beam dynamics, targets for proton beams, synchrotron radiation sources and experiments, photo-injectors, free electron lasers, accelerator controls, superconducting magnets, computing. <i>Specific participation</i> in: N1*, N2*, N3, JRA2*, JRA3, JRA4*
	Kingdom				<i>Fields of excellence</i> : RF design. Small emittance electron sources. Laser acceleration. SC cavity design.
	Daresbury Laboratory Daresbury, UK	CCLRC- DL	start of project	end of project	RF coupler design. Machine simulation. Laser-plasma acceleration. Design and construction of linear accelerator components. High brightness gun design. Beam diagnostics and instrumentation (DL provides the coordinator for WP4). General coordination of many UK network activities.
					Specific participation in: N1*

Participant number	Organisation (name, city, country)	Short name	Date enter project	Date exit project	Short description (i.e. fields of excellence) and specific roles in the consortium (* indicates work package responsibilities)
	Rutherford Appleton Laboratory Oxfordshire, UK	CCLRC- RAL	start of project	end of project	<i>Fields of excellence</i> : High Energy Physics Accelerators and Experiments, accelerator physics and technology, lasers for photoinjectors, high brightness gun design, beam diagnostics using laser devices. laser-plasma acceleration, instrumentation, pulsed proton accelerators, high power target, ion sources, RFQs, chopper development, beam dynamics, superconducting magnets. <i>Specific participation</i> in: N1, N2*, N3, JRA2*, JRA3, JRA4*
21	Imperial College London, United Kingdom	ICL	start of project	end of project	<i>Fields of excellence</i> : Particle Physics experimentation, machine-experiment interface in experiments, electronics, muon cooling design, high gradient electron and ion acceleration techniques using laser-produced plasmas, diagnostic techniques, theoretical modelling of laser-plasma interactions. <i>Specific participation</i> in: N1, N2, N3
22	Manchester University Manchester, United Kingdom	UMA	start of project	end of project	<i>Fields of excellence</i> : Particle Physics experimentation, simulation of beam delivery systems at linear colliders, beam diagnostics. <i>Specific participation</i> in: N1

ANNEX I - DESCRIPTION OF WORK for CARE - Contract number: RII3-CT-2003-506395

Participant	Organisation	Short	Short description (i.e. fields of excellence) and specific roles in the consortium	Associated
number	(name, city, country)	name	(* indicates work package responsibilities)	to
Associated Ir	stitutes Helsinki Institute of Physics, Helsinki, Finland	HIP	 <i>Fields of excellence</i>: Beam diagnostics tools and instrumentation. HEPH is assisted by a consortium of Finnish institutes and industry with expertise in RF measurements, automation and vacuum related mechanics and welding. <i>Specific participation</i> in: N1 	CERN
2	European Synchrotron Radiation Facility, Grenoble, France	ESRF	Fields of excellence: Beam dynamics and beam instrumentation expertise Specific participation in: N3	CERN
3	RWTH, Aachen, Germany	RWTH	Fields of excellence: High energy experiments, beam instrumentation Specific participation in: N1	DESY
4	Max Born Inst Berlin, Germany	MBI	Fields of excellence: Laser, RF gun Specific participation in: N1	DESY
5	Technical Univ. Berlin Berlin, Germany	TUBE	<i>Fields of excellence</i> : High frequency planar RF cavities, beam position monitors, wake field calculations <i>Specific participation</i> in: N1, N3	CERN
6	TEMF/ Tech. Univ. Darmstadt, Darmstadt, Germany	TEMF	<i>Fields of excellence</i> : Simulation code for machine modelling, RF gun <i>Specific participation</i> in: N1, N3	DESY
7	Institiut für Theoretische Physik Düsseldorf, Germany	UDUSS	Fields of excellence: Novel methods of acceleration, simulation of particle acceleration in plasma using PIC (particle in cell) codes Specific participation in: N1	CERN
8	Max-Planck-Institut für Quantumnoptik, Garching, Germany	MPQ	<i>Fields of excellence</i> : High intensity laser technology, relativistic plasma and electron generation and acceleration with laser-produced plasma, associated diagnostics <i>Specific participation</i> in: N1	CERN
9	Forschungszentrum, Karlsruhe, Karlsruhe, Germany	FZK	Fields of excellence: SMES, modulator, pulsed power sources Specific participation in: N1, N3	DESY
10	University of Rostock, Rostock, Germany	UROS	Fields of excellence: Space charge simulation, code development, HOMs Specific participation in: N1	DESY
11	University of Wuppertal, Wuppertal, Germany	UWUP	Fields of excellence: High gradient cavities, field emission control Specific participation in: N1	DESY

ANNEX I - DESCRIPTION OF WORK for CARE - Contract number: RII3-CT-2003-506395

Participant	Organisation	Short	Short description (i.e. fields of excellence) and specific roles in the consortium	Associated
number	(name, city, country)	name	(* indicates work package responsibilities)	to
Associated In	stitutes	1		
12	Ente per le Nuove Tecnologie l'Energia e l'Ambiente Roma, Italy	ENEA	 <i>Fields of excellence</i>: Long experience in using tools capable to determine the nuclear responses in different components of magnetic fusion reactors. Those has been used (Monte Carlo methods mainly) to optimise the shields necessary to protect from the nuclear radiation the Superconducting Coils used to sustain the plasma in magnetic fusion reactors. Relevant work and contracts for ITER (International Thermonuclear Experimental Reactor). <i>Specific participation</i> in: N3 	CERN
13	University of Osaka, Osaka, Japan	UnO	Fields of excellence: Neutrino and muon physics, accelerators, experiments, theory. Leading institution in the NuFACTJ Collaboration Specific participation in: N2	CERN
14	KEK, High Energy Accelerator Research Organization Tsukuba, Japan	KEK	 Fields of excellence: Expertise in Sc magnets for Accelerators and detectors and SC accelerator integration. Development of design and constructing techniques for super conducting magnets, development of special conductors. Experience in the operation of storage rings with electron cloud effects and development of electron cloud simulation tools, design studies on linear colliders, development of klystrons, modulators and normal conducting RF cavities. Specific participation in: N3 	CERN
15	Institute of Physics, University of Latvia, Latvia,	IPUL	 <i>Fields of excellence</i>: IPUL has many years of expertise in designing and operating liquid metal loops and in developing necessary equipment and technologies. <i>Specific participation</i> in: N2 	FZJ
16	NRG Petten Netherlands	NRG	 <i>Fields of excellence</i>: NRG is experienced in fluid dynamics, structural mechanics and thermal hydraulics calculations and in developing suitable computer software. <i>Specific participation</i> in: N2 	FZJ
17	Eindhoven University of Technology Eindhoven, Eindhoven, Netherlands	TUE	 <i>Fields of excellence</i>: Photoinjectors and photo-guns. High brightness electron beams for FEL, colliders and laser wakefield accelerators <i>Specific participation</i> in: N1 	CERN
18	Group of Lasers & Plasmas of the Inst Sup Tecnico Lisboa, Lisboa, Portugal	GOLP	<i>Fields of excellence</i> : Simulation and experiments on laser-plasma interactions and accelerators <i>Specific participation</i> in: N1	CERN
19	Joint Institute of Nuclear Research, Dubna, Russia	JINR	Fields of excellence:Expertise in accelerator magnets and integration. Design capability and studies on synchrotronradiation effect.Very special expertise in fast cycled magnets at low temperature. FEM produced power pulses andcavity-cell heating-tests.Specific participation in: N3	CERN

Participant	Organisation	Short	Short description (i.e. fields of excellence) and specific roles in the consortium	Associated
number	(name, city, country)	name	(* indicates work package responsibilities)	to
Associated In 20	Institutes Institute for High Energy Physics, Moscow, Russia	IHEP	Fields of excellence Radiation and shower calculations Specific participation in: N3	CERN
21	University of Uppsala, Uppsala, Sweden	UPSA	Fields of excellence: CTF3 commissioning. Tests of optics, modelling, and development of beam monitoring equipment. Specific participation in: N1	CERN
22	Université Bern, Bern, Switzerland	UNI-Bern	Fields of excellence: Experimental neutrino physics. Specific participation in: N2	UNI-GE
23	Université de Neuchâtel, Neutchâtel, Switzerland	UNI- Neuchatel	Fields of excellence: Experimental neutrino physics. Specific participation in: N2	UNI-GE
24	Ecole Polytechnique Fédérale de Lausanne Centre de Recherches en Physique des Plasma Lausanne, Switzerland	CRPP	<i>Fields of excellence</i> : Design and characterization of high current carrying superconductors (both low and high Tc). Experiments and analyses in the field of ac losses, quench and stability. Fusion magnets. World largest test facility for low temperature, short length superconductors (SULTAN). <i>Specific participation</i> in: N3	CERN
25	Eidgenossiche Technische Hochscule, Zurich, Switzerland	ETHZ	Fields of excellence: Very high frequency oscillators with applications to CTF3, fast optics, short pulse and survey and detector alignment Specific participation in: N1, N3	CERN
26	Physik-Institut Universitat Zurich Zurick, Switzerland	PIUZ	Fields of excellence: Muon beams and muon experiments. High power beams and targets.Specific participation in:N2	UNI-GE
27	University of Bath, Bath, U.K.	BAT	Fields of excellence: Electromagnetic levitation. Specific participation in: N2	ICL
28	Brunel University, Uxbridge, U.K.	BRU	<i>Fields of excellence</i> : Particle Physics experiments, computing and software, ionisation cooling studies. <i>Specific participation</i> in: N2	ICL
29	University of Cambridge, Cambridge, U.K.	САМ	Fields of excellence: Particle Physics experiments, neutrino physics studies. Specific participation in: N2	ICL

Participant number	Organisation (name, city, country)	Short name	Short description (i.e. fields of excellence) and specific roles in the consortium (* indicates work package responsibilities)	Associated to
Associated In				4
30	University of Abertay, Dundee, U.K.	UAD	Fields of excellence: Ultra short electron bunch measurements with ultra fast lasers for LC Specific participation in: N1	UMA
31	University of Durham, Durham, UK	DUR	Fields of excellence: Neutrino physics studies Specific participation in: N2	ICL
32	University of Edinburgh, Edinburgh, U.K.	EDIN	<i>Fields of excellence</i> : Particle Physics experiments, computing and software, ionisation-cooling studies. <i>Specific participation</i> in: N2	ICL
33	University of Glasgow, Glasgow, U.K.	GLA	<i>Fields of excellence</i> : Particle Physics experiments, computing and software, ionisation cooling studies <i>Specific participation</i> in: N2	ICL
34	University of Lancaster, Lancaster, UK	LANC	<i>Fields of excellence</i> : RF component design and simulation. <i>Specific participation</i> in: N1	UMA
35	Queen Mary, Univ. of London, London, U.K.	QMUL	 <i>Fields of excellence</i>: Luminosity optimisation, simulation of beam transportation, prototype for fast feedback, neutrino physics studies. <i>Specific participation</i> in: N1, N2 	UMA
36	Royal Holloway, Univ. of London, London, U.K.	RHUL	<i>Fields of excellence</i> : Geant4 simulation of beam line, laserwire R&D, collimation, luminosity spectrum <i>Specific participation</i> in: N1	UMA
37	University College London, London, U.K.	UCL	Fields of excellence: Laserwire R&D, Shintake monitor, luminosity spectrum Specific participation in: N1	UMA
38	University of Liverpool, Liverpool, U.K.	ULI	Fields of excellence: Simulation of beam delivery spectrum, positron undulator source, neutrino physics studies,ionisation muon cooling studies.Specific participation in:N1, N2	UMA
39	University of Oxford Oxford, U.K.	UOX	 <i>Fields of excellence</i>: Particle Physics experimentation, neutrino physics studies, ionisation cooling studies, instrumentation for beam alignment, diagnostics, beam profile, beam delivery. Plasma for novel acceleration. RF power supply technology. <i>Specific participation</i> in: N1, N2 	ICL
40	University of Sheffield, Sheffield, U.K.	SHEF	Fields of excellence: Particle physics experimentation, neutrino physics studies, mechanical aspects of targetry,ionisation muon cooling studies.Specific participation in:N2	ICL

Participant number	Organisation (name, city, country)	Short name	Short description (i.e. fields of excellence) and specific roles in the consortium (* indicates work package responsibilities)	Associated to
Associated Ir		папіс	(indicates work package responsionnes)	10
41	University of Southampton, Southampton, U.K.	SOTON	Fields of excellence: Neutrino physics studies Specific participation in: N2	ICL
42	Univ. of Strathclyde Glasgow, U.K.	USTRAT	<i>Fields of excellence</i> : Laser plasma interactions and FEL, RF engineering for accelerators. <i>Specific participation</i> in: N1	UMA
43	University of Sussex, Sussex, U.K.	SUSS	<i>Fields of excellence</i> : Particle Physics experimentation, neutrino physics studies. <i>Specific participation</i> in: N2	ICL
44	Fermi National Accelerator Laboratory Batavia, U.S.A.	FNAL	 <i>Fields of excellence</i>: Expertise in SC hadron collider integration and operation. Design and construction of accelerator magnets, test of magnets. Specific experience in high field A15 accelerator magnets R&D, design of innovative solution of VLHC (like the handling of synchrotron radiation). Radiation shielding calculations. Design work on linear colliders of SC and NC technology <i>Specific participation</i> in: N3 	CERN
45	Lawrence Berkeley National Laboratory, Berkeley, U.S.A.	LBNL	Fields of excellence: Expertise in SC magnets for accelerators and wide experience in very high field design and construction technique. Test of SC magnets. Reference centre for cabling of Rutherford cable and of A15 and HTS development and test for acceleratorsSpecific participation inN3	CERN
46	Brookhaven National Laboratory U.S.A.	BNL	Fields of excellence: Expertise in SC hadron collider integration and operation, Accelerator Magnets design and construction, cable design, and test; recent development for cycling SC magnets and HTS special designed magnetsSpecific participation in:N3	CERN
Associated in	dustrial partners	Т		T
47	Alsthom MSA Belford, France	ALS	<i>Fields of excellence</i>: Design and manufacture of superconducting wire and cable, design and manufacture of superconducting magnet.<i>Specific participation</i> in: JRA4	CERN
48	ACCEL Instruments GmbH, Bergisch-Gladbach Germany	ACCEL	Fields of excellence: Design and fabrication of complete accelerating systems (normal- and superconducting), design and fabrication of superconducting cavities, infrastructure for chemistry and clean-room work, EB welding facility Specific participation in: N1, JRA1	DESY
49	WSK Messtechnik GmbH, Hanau, Germany	WSK	Fields of excellence: Design and fabrication of analytic equipment for material analysis, development of a SQUID scanner for examination of sputter targetsSpecific participation in:N1, JRA1	DESY

ANNEX I - DESCRIPTION OF WORK for CARE - Contract number: RII3-CT-2003-506395

Participant	Organisation	Short	Short description (i.e. fields of excellence) and specific roles in the consortium	Associated			
number	(name, city, country)	name	(* indicates work package responsibilities)	to			
Associated in	dustrial partners						
50	European Advanced Superconductors GmbH, Hanau, Germany	EAS	<i>Fields of excellence</i> : Design and manufacture of superconducting wires. <i>Specific participation</i> in: JRA4	CERN			
51	Henkel Lohnpoliertechnik GmbH Neustadt-Glewe, Germany	HLT	<i>Fields of excellence</i> : chemical and electrochemical surface treatment of steel and special alloys for pharma, biotech. and semiconductor industry <i>Specific participation</i> in: JRA1	DESY			
52	E. Zanon S.P.A., Schio, Italy	ZANON	NON Fields of excellence: Design and fabrication of Nb cavities, infrastructure for chemistry, EB welding facility Specific participation in: N1, JRA1				
53	ShapeMetal Innovation BV, Enschede, Netherlands	SMI	Fields of excellence: Design and manufacture of Nb3Sn wires by the powder-in-tube technique. Specific participation in: JRA4	CERN			
54	Kriosystem Ltd. Poland	KRIO	Fields of excellence: Design and manufacture of helium cryostats. Specific participation in: JRA4	WUT			
55	e2v Technologies Ltd, Chelmsford, UK	E2V	<i>Fields of excellence</i> : Design and manufacture of RF, microwave and switching devices, sensors, power supplies, etc. <i>Specific participation</i> in: N1	CCLRC			
56	TMD Technologies Ltd, Hayes, UK	TMD	Fields of excellence: Design and manufacture of microwave tubes, high voltage power supplies, transmitters and receivers. Specific participation in: N1	CCLRC			
57	Oxford Danfysik Ltd, Oxford, UK	DAN	Fields of excellence: Design, production and installation of synchrotron beam lines. Specific participation in: N1	CCLRC			
58	Technical Systems Ltd, Reading, UK	TECUK	Fields of excellence: Design and manufacture of electron beam linear accelerators for industrial and scientific uses. Specific participation in: N1	CCLRC			

4. List of Activities

The participants to the contract will perform the activities summarised in these tables:

Activity Number	Descriptive Title	Short description and specific objectives of the activity							
Networking activities									
N1 ELAN	Electron Linear Accelerator Network	The project N1 aims at coordinating the European R&D on electron accelerators and colliders and at defining a strategy to optimise the cost and reliability of present technologies, in particular supra conductive linacs using TTF at DESY. For the longer term, the aim is to define a roadmap for multi-TeV colliders, using CTF at CERN. Generating new ideas in instrumentation and evaluating the most advanced acceleration techniques using lasers and plasmas will also be part of the mission.							
N2 BENE	Beams for European Neutrino Experiments	The project N2 aims at co-ordinating and integrating the activities of the accelerator and particle physics communities that are giving or promise contributions to the realization of upgraded and/or new European neutrino facilities of unprecedented performance. The final objectives are 1) recommend the optimal road map from the present infrastructure to the most rewarding future facilities, including conventional neutrino Superbeams, Neutrino Factories and Betabeams 2) assemble a coherent community capable to sustain the long term program of R&D, technical realization and scientific exploitation.							
N3 НЕНІНВ	High-Energy High-Intensity Hadron Beams	The project N3 aims at identifying the main obstacles for pushing the beam intensity and energy in a collider storage ring beyond those of the LHC. The N3 activities address in this context machine operation aspects as well as technical challenges for the accelerator hardware. Over a period of 5 years the project aims at defining a roadmap for cost efficient solutions for a future high energy and high intensity hadron collider. The project is organized in 3 working groups each specialising on one challenge for achieving high intensity and high energy proton beams: 1) Advancements in accelerator magnet technologies (AMT), novel methods for accelerator beam instrumentation (ABI) and accelerator physics and optics design (APD).							

Activity Number	Descriptive Title	Short description and specific objectives of the activity							
Research activities									
JRA1 SRF	Super-conducting Radio Frequency	 R&D on superconducting cavity technology in order to upgrade the quality of the existing SRF accelerator test facility TTF and to develop the basis of improved SRF systems for superconducting accelerators. The activity will include the following studies and developments of prototypes: implementation of electro-polishing for better surface quality (roughness <1µm), exploration of new fabrication methods such as vacuum arc coating, improving the methods for quality control (sensitivity), developing improved input couplers, developing new cold tuner systems, improving the reliability of RF components and developing low-cost prototypes, 							
JRA2 PHIN	Charge production with Photo- Injectors	 performing the relationity of RF components and developing low cost prototypes, performing integrated tests of the cavities, couplers, tuners under development. Research and Development on charge-production by interaction of a laser pulse with material within an RF field. Coordination of the efforts done in various Institutes on the photo-injectors devoted to improve or extend the existing infrastructures like CTF. The activities include the study, design, realization and test of: Photocathodes with high quantum efficiency and lifetime Laser systems to produce long train of high charge electron bunches 3 GHz RF gun with innovative photo-cathode with high charge and high average current or low emittance Superconducting RF gun Alternative electron source using laser-driven plasma 							
JRA3 HIPPI	High Intensity Proton Pulsed Injector	 Integrated development of the technology required for the upgrade or construction of high intensity proton pulsed linear injectors (linacs) with beam energies below 200 MeV. This includes the studies and prototyping of Normal conducting Accelerating Structures Superconducting accelerating structures Beam chopping Beam Dynamics 							
JRA4 NED	Next European Dipole (High Magnetic Field Tech.)	 The Joint Research Activities aim at integrating and coordinating superconducting accelerator magnet technology in Europe. The project has 3 main objectives: To address coil cooling issues, To promote high performance Nb₃Sn wire development in collaboration with European industry To improve Nb₃Sn conductor insulation 							

5. Financial information for the whole duration of the project

					Financial in	formation -								
		Cost mo	del used				Costs	and EC con	tribution pe	r type of ac	tivities			
	Organi- sation short name	For transnat ional Access							Other specific activities				Total	
Partici- pant n°			For any other activities	reque	ated eligible costs and ested EC contribution duration of the project)	RTD activities (1)	Demonstr ation activities (2)		on/Networ	Transnatio nal access (5)	Connectivi ty (6)	Other including Specific Service Activities for CND (7)	+(4)+(5)+(6)+(7)	Total receipts
					Direct costs (a)	4 526 491		844 500	90 000				5 460 991	
				Eligible	of which subcontracting	0		0	0				0	
1	CEA		FC	costs	Indirect costs (b)	2 576 509		647 500	0				3 224 009	
					Total eligible costs (a)+(b)			1 492 000					8 685 000	
					EC contribution	1 645 000		624 200	90 000				2 359 200	
		CLN		Eligible costs	Direct costs (a)	0			5 167				5 167	
					of which subcontracting	0			0				0	
2	UCLN		AC		Indirect costs (b)	0			1 033				1 033	
				_	Total eligible costs (a)+(b)	0			6 200				6 200	
					Requested EC contribution				6 200				6 200	
					Direct costs (a)	5 431 667			132 500				5 564 167	
0				0	of which subcontracting	0			0				0	
3	CNRS		FCF	costs	Indirect costs (b)	1 086 333			26 500				1 112 833	
				Deguartes	Total eligible costs (a)+(b)	6 518 000 2 055 000			159 000				6 677 000 2 214 000	
				Requested	EC contribution	1 476 000			159 000 26 800				1 502 800	
				Eligible	of which subcontracting	0			20 800				1 302 800	
4	GSI				Indirect costs (b)	205 000			0				205 000	
т	001		10	00010	Total eligible costs (a)+(b)	1 681 000			26 800				1 707 800	
				Requested	EC contribution	363 000			26 800				389 800	
				Eligible co		000 000			20 000					
	TO	TAL			I EC contribution									
				Requested										

					Financial inf	ormation -								
		Cost mo	del used				Costs	and EC con	tribution pe	er type of act	tivities			
	Organi- sation short name	For transnat ional Access						nr	Other specific activities				Total	
Partici- pant n°			For any other activities	reque	ated eligible costs and sted EC contribution duration of the project)	RID	activities		Coordinati on/Networ king (4)	Transnatio nal access (5)	Connectivi ty (6)	Other including Specific Service Activities for CND (7)	+(4)+(5)+(6)+(7)	Total receipts
					Direct costs (a)	836 667			0				836 667	
				Eligible	of which subcontracting	0			0				0	
5	IAP-FU		AC	U	Indirect costs (b)	167 333			0				167 333	
					Total eligible costs (a)+(b)	1 004 000			0				1 004 000	
				Requested	EC contribution	420 000			0				420 000	
				Eligible costs	Direct costs (a)	1 365 833			177 500				1 543 333	
					of which subcontracting	290 000			0				290 000	
6	DESY		AC		Indirect costs (b)	215 167			35 500				250 667	
					Total eligible costs (a)+(b)	1 581 000			213 000				1 794 000	
				Requested	Requested EC contribution				213 000				1 794 000	
					Direct costs (a)	1 421 000			39 000				1 460 000	
				Eligible	of which subcontracting	0			0				0	
7	FZJ		FC	costs	Indirect costs (b)	854 000			0				854 000	
					Total eligible costs (a)+(b)	2 275 000			39 000				2 314 000	
				Requested	EC contribution	527 000			39 000				566 000	
					Direct costs (a)	0			8 583				8 583	
					of which subcontracting	0			0				0	
8	TUM		FC	costs	Indirect costs (b)	0			1 717				1 717	
					Total eligible costs (a)+(b)	0			10 300				10 300	
				Requested	EC contribution	0			10 300				10 300	
	то	TAL		Eligible co:	sts									
	10	TAL		Requested	EC contribution									

					Financial inf	ormation -								
		Cost mo	del used				Costs	and EC con	tribution pe	r type of ac	tivities			
	Organi- sation short name						Demonstr		Other specific activities				Total	
Partici- pant n°		For transnat ional Access	For any other activities	reque	ated eligible costs and sted EC contribution duration of the project)	RID			on/Networ	Transnatio nal access (5)	Connectivi ty (6)	Other including Specific Service Activities for CND (7))+(7) 5	Total receipts
					Direct costs (a)	341 667			18 333				360 000	
				Eligible	of which subcontracting	0			0				0	
9	FZR		AC	costs	Indirect costs (b)	68 333			3 667				72 000	
					Total eligible costs (a)+(b)	410 000			22 000				432 000	
				Requested	EC contribution	380 000			22 000				402 000	
				Eligible costs	Direct costs (a)	1 731 667			167 000				1 898 667	
					of which subcontracting	0			0				0	
10	INFN		AC		Indirect costs (b)	346 333			33 400				379 733	
					Total eligible costs (a)+(b)	2 078 000			200 400				2 278 400	
				Requested	Requested EC contribution				200 400				2 134 400	
					Direct costs (a)	346 000			18 500				364 500	
				Eligible	of which subcontracting	0			0				0	
11	TEU		FC	costs	Indirect costs (b)	274 000			0				274 000	
					Total eligible costs (a)+(b)	620 000			18 500				638 500	
				Requested	EC contribution	282 000			18 500				300 500	
					Direct costs (a)	210 833			8 333				219 166	
				Eligible	of which subcontracting	0			0				0	
12	TUL		AC	costs	Indirect costs (b)	42 167			1 667				43 834	
					Total eligible costs (a)+(b)	253 000			10 000				263 000	
				Requested	EC contribution	253 000			10 000				263 000	
		T A1		Eligible co	sts									
	10	TAL			EC contribution									

					Financial inf	ormation -								
		Cost model used				Costs and EC contribution per type of activities								
Partici- pant n°	Organi- sation short name	For transnat ional Access	For any other activities	Estimated eligible costs and requested EC contribution (whole duration of the project)		RTD activities (1)	Demonstr ation activities (2)	Consortiu m Manageme nt activities (3)	Other specific activities				Total	
									on/Networ	Transnatio nal access (5)	Connectivi ty (6)	Other including Specific Service Activities for CND (7)	(8)= (1)+(2)+(3) +(4)+(5)+(6)+(7)	Total receipts
	IPJ				Direct costs (a)	333 333			8 333				341 666	0 68 334 10 000
					of which subcontracting	0			0				0	
13			AC		Indirect costs (b)	66 667			1 667				68 334	
					Total eligible costs (a)+(b)	400 000			10 000				410 000	
				Requested	I EC contribution	235 000			10 000				245 000	
	WUT- ISE		AC		Direct costs (a)	308 333			6 667				315 000	
					of which subcontracting	0			0				0	
14					Indirect costs (b)	61 667			1 333				63 000	
					Total eligible costs (a)+(b)	370 000			8 000				378 000	
				Requested	EC contribution	370 000			8 000				378 000	
				Eligible costs	Direct costs (a)	54 667			4 167				58 834	
					of which subcontracting	48 000			0				48 000	
15	WUT		AC		Indirect costs (b)	1 333			833				2 166	
					Total eligible costs (a)+(b)	56 000			5 000				61 000	
					EC contribution	56 000			5 000				61 000	
	CSIC		FC	Eligible costs	Direct costs (a)	0			41 833				41 833	
					of which subcontracting	0			0				0	0
16					Indirect costs (b)	0			8 367				8 367	
					Total eligible costs (a)+(b)	0			50 200				50 200	
				Requested	EC contribution	0			50 200				50 200	
	TOTAL Eligible costs													
	10	TAL		U	EC contribution									

					Financial inf	ormation -								
		Cost model used			Costs and EC contribution per type						be of activities			
Partici- pant n°	Organi- sation short name	For transnat ional Access	For any other activities				Demonstr ation activities (2)	Consortiu m Manageme nt activities (3)	Other specific activities				Total	
				reque	Estimated eligible costs and requested EC contribution (whole duration of the project)				on/Networ	Transnatio nal access (5)	Connectivi ty (6)	Other including Specific Service Activities for CND (7)	(8)= (1)+(2)+(3) +(4)+(5)+(6)+(7)	Total receipts
	CERN				Direct costs (a)	2 937 500			312 750				3 250 250	
				Eligible costs	of which subcontracting	600 000			0				600 000	
17			AC		Indirect costs (b)	467 500			62 550				530 050	
					Total eligible costs (a)+(b)	3 405 000			375 300				3 780 300	
				Requested	I EC contribution	2 413 000			342 300				2 755 300	
	UNI-GE		AC		Direct costs (a)	0			77 500				77 500	
					of which subcontracting	0			0				0	
18					Indirect costs (b)	0			15 500				15 500	
					Total eligible costs (a)+(b)	0			93 000				93 000	
				Requested	I EC contribution	0			(93 000)*				(93 000)*	
				Eligible costs	Direct costs (a)	325 000			53 400				378 400	
					of which subcontracting	0			0				0	
19	PSI		FC		Indirect costs (b)	35 000			0				35 000	
					Total eligible costs (a)+(b)	360 000			53 400				413 400	
					EC contribution	(360 000)*			(53 400)*				(413 400)*	
	CCLRC		FC		Direct costs (a)	2 024 000			82 800				2 106 800	
				Eligible	of which subcontracting	0			0				0	0 000
20					Indirect costs (b)	1 910 000			0				1 910 000	
					Total eligible costs (a)+(b)	3 934 000			82 800				4 016 800	
				Requested	EC contribution	640 000			82 800				722 800	
	TOTAL Eligible costs													
	10	TAL		0	EC contribution									

					Financial inf	formation -	- whole du	ration of th	e project					ſ
		Cost mo	del used			Costs and EC contribution per type of activities								
	Organi- sation short name	For transnat ional Access					Consor	Consortiu			other specific activities			
Partici- pant n°			For any other activities	reque	ated eligible costs and ested EC contribution duration of the project)	RTD activities (1)	Demonstr ation activities (2)	m Manageme nt activities (3)	Coordinati on/Networ king (4)	Transnatio nal access (5)	Connectivi ty (6)	Other including Specific Service Activities for CND (7)	(8)= (1)+(2)+(3) +(4)+(5)+(6)+(7)	Total receipts
			AC	Eligible costs	Direct costs (a)	0			74 417				74 417	
					of which subcontracting	0			0				0	
21	ICL				Indirect costs (b)	0			14 883				14 883	
					Total eligible costs (a)+(b)	0			89 300				89 300	
				Requested	EC contribution	0			89 300				89 300	
			AC		Direct costs (a)	0			32 500				32 500	
				Eligible costs	of which subcontracting	0			0				0	
22	UMA				Indirect costs (b)	0			6 500				6 500	
					Total eligible costs (a)+(b)	0			39 000				39 000	
				Requested EC contribution		0			39 000				39 000	
					Eligible costs			1 492 000	1 601 200				35 141 200	
	TOTAL							624 200					15 200 000 (+506400)*	

*Since the contract with EU is expected to be signed in 2003 and the agreement on Swiss participation in the 6th FP will not yet be in force, Swiss Partners should be funded by the Swiss Government

6. Estimated breakdown of the EC contribution per reporting period

Estimated breakdown of the EC contribution per reporting period										
Reporting Periods	Month x – Month y	Estimated Grant to the Budget								
Reporting Ferrous		Total	In which first six months							
Reporting Period 1	M1-12	4785920								
Reporting Period 2	M13-M24	4505260	2195200							
Reporting Period 3	M25-M36	3584310	1941650							
Reporting Period 4	M37-M48	1724670	903000							
Reporting Period 5	M49-M60	599840	325020							

7. Management of the I3

The Management of CARE

The CARE consortium is composed of 22 legal entities (public research entities operating research infrastructures and universities) representing a scientific staff of more than 600 people. The management structure of the consortium will, at the same time, ensure a wide participation of this entire scientific community and keep an efficient decision-making process.

The management organizational structure is summarized in the attached diagram. Its key bodies include the Governing Board, the coordinator assisted by the management team, the steering committee, the Dissemination Board and the CARE Council. They are detailed below.

- The **GOVERNING BOARD** (**GB**) is the arbitration and strategic decision-making body. It is composed of 1 representative per Contractor, i.e. 22 members. The CARE coordinator and the ECFA chairman are non-voting members of the Governing Board. Meetings will take place once a year. The Governing Board is competent to decide, upon the Steering Committee proposals, on political and strategic orientation of the Project, significant modification of the work to be done (i.e. decision to abandon a research program), approval of the Consortium budget and of the financial allocation of the European funds, rescheduling of an activity, exclusion of a defaulting participant...
- **THE CARE COORDINATOR** (CC) is from the Commissariat à l'Energie Atomique (CEA) working in the DSM/DAPNIA Department. He will be responsible for the overall management of the CARE Project and for the day-to-day operation, both for scientific actions and for administrative, financial and legal management. He will also be the intermediary between the Consortium and the Commission and fulfil its duties in accordance with the EC Contract. The Coordinator chairs the Steering Committee, is member of the CARE Collaboration Council and of the Dissemination Board and is a non-voting member of the Governing Board.
- A MANAGEMENT TEAM (MT) will assist the CARE Coordinator. It includes:
 - A Technical/Administrative Deputy Coordinator assisted by accounting staff
 - A legal advisor (part time) from the CEA Legal Department
 - A Deputy coordinator for Dissemination matters, who will chair the Dissemination Board and be the link between the Coordinator and the Dissemination Board. He will supervise the reports and deliverables for the Commission.
 - A web master specialist

• The SUBPROJECTS and their Management

The CARE Project includes 7 SUBPROJECTS:

- 3 for carrying out Networking Activities (NA)
- 4 for carrying out Joint Research Activities (JRA)

A Subproject Coordinator(s) who is assisted by a Deputy leads each Subproject. The Subproject Coordinator manages and coordinates the work within the Subproject on a day-today basis. Each Subproject is structured by Work Packages (**WP**), having their own and defined tasks, under the supervision of a Work Package Leader.

• Subproject Steering Committee (SSC)

Following the same model than the CARE Steering Committee (see below), each subproject has his own **Subproject Steering Committee** composed of the Subproject Coordinator, his deputy and the Work Package leaders. Each Subproject Steering

Committee will meet at least four times a year to review and manage the activities conducted within the Subproject. In case of a deadlock situation, it will refer to the CARE Steering Committee for arbitration.

• External Scientific Advisory Committee (ESAC)

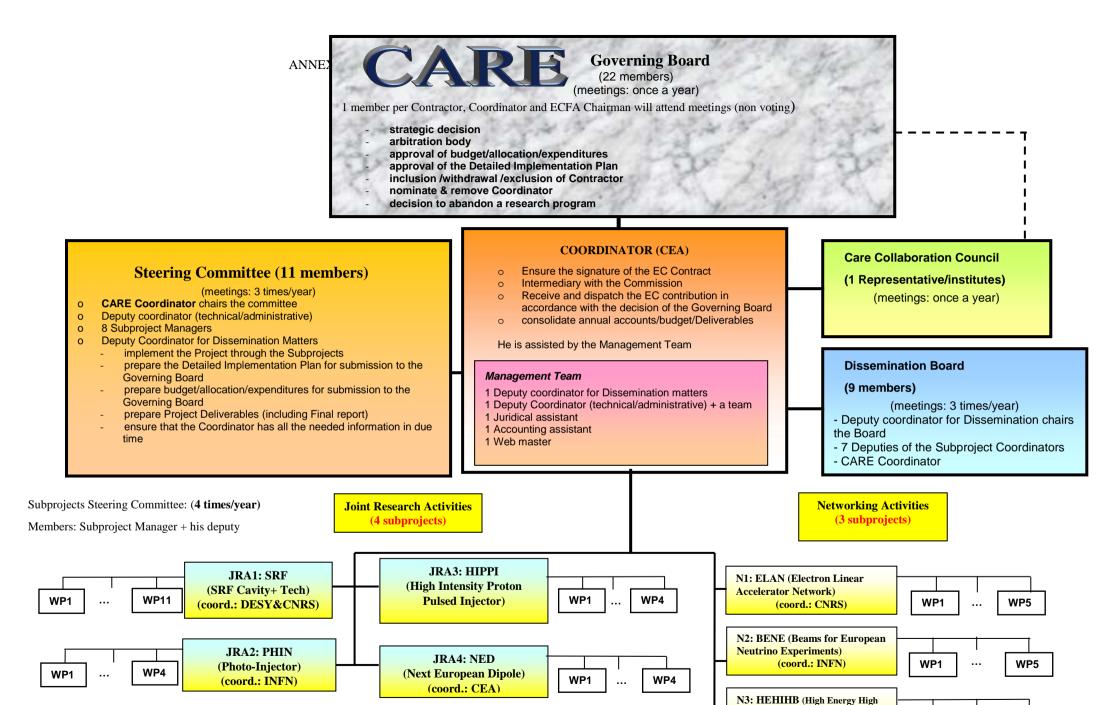
An External Scientific Advisory Committee, which will meet once per year, is set up for each subproject. Composed of renowned experts, it will review the Subproject activities, establish a link with other field for which these activities are relevant and with similar activities being carried out outside of Europe.

• The **STEERING COMMITTEE** (**SC**) is composed of 11 members: the Coordinator, who will chair the meetings, the technical/administrative Deputy Coordinator, the 8 Subproject Coordinators (JRA1 has two subproject coordinators) and the Heads of the Dissemination Board. Each member has one vote; the decisions are taken upon a simple majority.

The Steering Committee is the central management body of the Consortium in charge of managing the whole Project. It meets at least three times a year. It oversees and reviews the work progress and decides on overall technical matters, submit proposals to the Governing Board, prepare the Consortium budget and the allocation of funding to be submitted to the Governing Board, consolidate the reports received from the Subprojects and prepare the reports and deliverables to be submitted to the Governing Board for approval and then sent to the Commission. The Steering Committee has also an arbitration role in case of deadlock situation within a Subproject or between a Subproject and a Work package.

- The **DISSEMINATION BOARD** (**DB**) is composed of 9 members: the chair elected by the CARE Council, the 7 Subprojects Deputies and the Coordinator. Meetings will take place at least 3 times a year. The Dissemination Board is responsible for the dissemination of the Knowledge, for ensuring the quality of publication and is the arbitration body for intellectual property issues arising from the Project. It is also in charge to ensure an appropriate protection of the Knowledge. The participation of deputies' coordinators from the Subproject allows efficient and complete information of the Dissemination Board.
- Once a year, all representatives of the community of researchers and scientists involved in the Project, including subcontractors and associated partners, will meet at the **CARE COLLABORATION COUNCIL**. This consultative and advisory body on organizational and scientific matters advises both the Steering Committee and the Governing Board on Project orientation, the operation of the Consortium and its outcomes. This annual meeting is a place of communication and exchange for the whole scientific community.
- A very important element in the operation of the CARE consortium will be the

Yearly CARE general meetings


These meetings will be organized in the large infrastructure laboratories. A different place will be chosen every year and the dates and the location of the meeting will be announced 6 months in advance.

These meetings are essential events for the CARE project and will contribute

- To enhance the exchange of information and stimulate lively scientific discussions
- To disseminate the achievements of CARE amongst the participants but also to the international community
- To review all organizational and scientific matters

This meeting integrates one of the yearly-scheduled Networking meetings and therefore 5 days are normally needed. Indeed, during the first 3 days, the networking activities will hold parallel sessions, possibly with joint sessions on specific topics. During the networking session, specific discussions with the Joint Research Activities will be set up. The 2 last days will be devoted to plenary sessions, where all activities will make a status report, as well as general discussion sessions.

The participants plan to hold at a **kick-off meeting** financed by the participating institutes at the end of 2003 at CERN.

8

Intensity Hadron Beams)

(coord.: CERN)

WP1

...

WP3

Plan for using and disseminating knowledge

Particular attention will be devoted to the dissemination of the knowledge acquired in the CARE activities. It includes the monitoring of the worldwide activities relevant to the work being carried out in CARE, thanks to the participation of non-EU partners in the networking activities and to the External Scientific Advisory Committees in each Joint Research Activity. The plan for the dissemination of the knowledge is articulated around 5 main axes

- 1. Written CARE documentations
- 2. Web based activities
- 3. Creation and maintenance of specific database
- 4. Promotion of conference/workshop talks and contributions
- 5. Identification of Spin-offs and development of Outreach Activities

In general, the detailed definition and the reviewing of the Plan for Use and Dissemination of the knowledge issued in the CARE project will be the task of the Dissemination Board (DB). The plan will be submitted to approval to the Governing Board. The DB will then assist the CARE Steering Committee in its implementation. The initial DB membership (which may be extended at a later stage as appropriate) includes 9 persons:

- A Chairperson, elected by the CARE Collaboration Council
- The deputies of the 3 NA and 4 JRA coordinators
- And the CARE Coordinator, as an ex-officio member

Although the first task of the DB will be to define the detail of the dissemination plan, it is expected that it will include the following goals and means:

- 1. Ensuring the quality and the distribution of the publications in scientific review, contributions to and proceeding of conferences and workshops, CARE general meetings and workshops, CARE-notes and reports, books... To this end, the DB will be in charge of
 - Drafting the publication policy to be submitted for approval to the Governing Board
 - Defining and regularly updating the list of eligible authors for scientific documents as appropriate
 - Organizing the internal reviewing of the publications and rehearsal of speakers
- 2. Developing Web based activities: a web site (<u>http://esgard.lal.in2p3.fr</u>) has already been created and has been used intensively in preparing the CARE projectl. It includes already much information relative to the CARE activities. Recently, a centralized archiving Web-based mailing system has been set up, allowing one to subscribe to the different CARE activities and thus be up to date on all development. This site will be developed further by including in particular
 - Information related to the Project in the web,
 - Postdoctoral and thesis opportunities
 - Indicators of the impact of the Activities. For example the number of publications, preprints, reports and their citations in other publications, presentations at the conferences, number of thesis, number of access to the CARE web site...
- 3. Providing centralized repositories, directories and databases such as
 - Database of electronic addresses of the CARE members
 - CARE-note and Report repository with search engine
 - Scientific and technical specific databases
- 4. Promoting actively talk and contribution at conferences and workshops, including the reporting activities at a higher level (ECFA, ICFA, EPS...).
- 5. Identifying the possible spin-off from the intellectual and technical developments and set up a team for developing outreach activities.

To achieve its objectives, the DB may set up, as appropriate, ad-hoc task or review committees with specific and limited in time tasks (for example a committee to review a paper to be submitted for publication, or to organize a rehearsal of a presentation at a conference...)

It will also carry specific communication actions in the name of the Consortium and, in case of any problem, refer it to the Steering Committee for arbitration. For example several Industry days will be organised during the 5 years of the project.

The Dissemination Board will submit an annual report to the Steering Committee and to the Governing Board.

8. Description of each activity of the I3 (including its outline implementation plan)

8. N1 Activity N1: Electron Linear Accelerator Network (*ELAN*)

8. N1.1 Description and objectives of the activity

Major accelerator centres in the world, CERN and DESY in Europe, SLAC and FNAL in the USA, KEK in Japan, have been active during the last 10 years on R&D in view of building a 500 GeV - 1TeV electron-positron Linear Collider (LC). A timely construction of a worldwide LC, overlapping with LHC operation, is recognized as the highest scientific priority in particle physics after LHC in Asia (ACFA), Europe (ECFA) and North America (HEPAP) and at the political level by OECD.

While in the USA there is a structure which allows one to coordinate accelerator activities by providing centrally manpower and financing, this is not the case in Europe. CARE provides an excellent opportunity to strengthen the structure of European activity for the next 5 years.

• <u>The first objective</u> of the ELAN network is to coordinate the R&D on electron accelerators at the European level, and to foster the participation of new groups in the various European countries to the worldwide effort.

At present TESLA, the project based on superconductivity (SC), is acknowledged as the most advanced, cost effective and ready to be built to reach 500 GeV with very high luminosity. The development of this technology being validated at the TESLA Test Facility (TTF) at DESY aims at low cost, reliability and increase in gradients to reach 800 GeV.

For the longer term, a new approach replacing the discrete power sources (klystrons) by an auxiliary accelerator (two-beam scheme) is under development at CERN in the CTF3 facility. The goal is to achieve a very high accelerating field, 150 MV/m. The major challenges will be to generate the required RF power and to transport the beam through the cavities operating at very high RF frequency.

• <u>The second objective</u> of the ELAN network is to evaluate the various technologies for improving the present test facilities, to set the priorities, and to define a roadmap for future electron accelerators and colliders.

An international panel chaired by G. Loew has issued a report (ILC-TRC report) ranking for the various projects the remaining necessary R&D studies in the proposed technologies. It will serve as a reference to this network.

Although there are different technologies being considered, there is a large overlap between the various schemes studied. Moreover, many accelerator physics issues are equally important for linear colliders and linac-based radiation sources like the free-electron lasers (FEL) operating in the X-ray range. We think that optimal efficiency can be reached by combining these efforts, by creating the appropriate tools to collect informations and by evaluating the accelerator simulation software tools.

• <u>The third objective</u> is to enhance the present synergy and avoid the duplication of work.

Beyond consolidating and improving existing technologies, a large part of the activity will be to evaluate and promote innovative concepts, in contact with groups specialized in complementary techniques such as laser-plasma acceleration.

The network will also investigate potential applications for the Superconducting RF (SRF) and Photon-Injector (PHIN) Joint Research Activities, as well as synergies with linac-based FEL and synchrotron light sources.

8. N1.2 Participants in the activity

The 16 contracting participants and the 26 associated institutes of this network are listed in Tables 8.N1.2a and 8.N1.2b, with their involvement in the work packages described below. They represent 11 countries plus the international laboratory CERN, including large institutes such as CCRLC, CEA, DESYor INFN and small universities, fulfilling the goal assigned in FP6: dissemination of knowledge and expertise from large to medium size laboratories and institutes.

Number	Participant	LTECNC	LTECSC	BDYN	INSTR	ANAD
1	CEA		Х	Х	Х	
3	CNRS	Х	Х	Х	Х	Х
	CNRS-Orsay		X	X		
	CNRS-CPHT					X
	CNRS-LULI					X
	CNRS-LAPP	X			X	
	CNRS-LOA	X			X	X
	CNRS-LPGP					X
	CNRS-LPCO	X				
5	DESY		Х	Х	Х	
7	FZJ				Х	
8	FZR		Х		Х	
10	INFN	Х	Х		Х	
	INFN-LNF	X			X	
	INFN-LNL		X			
	INFN-Mi		X			
	INFN-Na		X			
	INFN-Ro2		X			
11	TEU				Х	
12	TUL		X			
13	IPJ		Х			
14	WUT-ISE		X			
16	CSIC		X	Х		
	CIEMAT		X			
	LEII		X			
17	CERN	Х		Х	Х	
19	PSI				Х	
20	CCLRC	X	X	Х	Х	Х
21	ICL			Х	Х	Х
22	UMA			Х	X	

Table 8.N1.2a: List of contracting participants

Number	Institutes	LTECNC	LTECSC	BDYN	INSTR	ANAD	Associated to
1	HEPH				Х		CERN
3	RWTH				Х		DESY
4	TUBE	Х			Х		CERN
5	MBI	Х					DESY
6	TEMF			Х			DESY
7	UDUSS					Х	CERN
8	MPQ					Х	CERN
9	FZK		Х				DESY
10	UROS			Х			DESY
11	UWUP		Х				DESY
17	TUEI					Х	CERN
18	GOLP					Х	CERN
21	UPSA	Х					CERN
25	ETHZ	Х					CERN
30	UAD				Х		UMA
34	LANC	Х	Х				UMA
35	QMUL			Х	Х		UMA
36	RHUL			Х	Х		UMA
37	UCL				Х		UMA
38	ULI			Х	Х		UMA
39	UOX				X	Х	ICL
42	USTRAT					Х	UMA
55	E2V	Х	Х				CCLRC
56	TMD	Х	Х				CCLRC
57	DAN	Х	Х				CCLRC
58	TECUK	Х	Х				CCLRC

Table 8.N1.2b: List of associated institutes

8. N1.3 Outline of the implementation plan for the full duration of the activity (including milestones and deliverables)

The objectives of ELAN will be achieved by:

- a series of general and specialized meetings and workshops in conjunction with the JRA activities whenever possible
- the development of a Web site
- the development of databases and code repositories

The activity of ELAN has been shared in 5 work packages. In most cases the first objective is to collect all available information to establish the 'state of the art' in the field and to identify the present limitations.

• WP1: Normal Conducting Linac Technology (LTECNC)

- LTECNC1: Study of high gradient accelerating structures
- o LTECNC2: Power transfer structures
- LTECNC3: RF power sources
- o LTECNC4: R&D on drive beam generation in CTF
- o LTECNC5: Study on precision alignment
- LTECNC6: Electron source (in collaboration with JRA on photo injector)

• WP2: Super conducting Linac Technology (LTECSC)

- LTECSC1: Cavities
- o LTECSC2: Magnets
- o LTECSC3: Material research and fabrication methods

• WP3: Beam dynamics (BDYN)

- o BDYN1: Emittance preservation
- o BDYN2: Luminosity stabilization
- BDYN3: Tuning algorithms
- o BDYN4: Orbit control
- o BDYN5: Simulation code development
- WP4: Instrumentation and diagnostics (INSTR)
 - o INSTR1: Beam position monitors
 - o INSTR2: Beam size and bunch length monitors
 - INSTR3: Feedback systems
- WP5: Advanced and Novel Accelerator Development (ANAD)
 - ANAD1: Ultra-short pulse electron injectors
 - o ANAD2: Ultra-high gradient extended plasma wave
 - o ANAD3: Beam diagnostics and delivery for plasma based accelerators
 - o ANAD4: Integrated experiment

These work packages are dealing with tightly connected issues, such as beam emittance preservation, which will be coordinated by WP3. Another important issue will be to ensure that the R&D work benefits to both proposed LC technologies. Luminosity stabilization will also require a tight connection between WP3 and WP4. Feedback systems for alignments of the linacs are common items for WP1 and WP2.

8. N1.3.1 Deliverables

The Main Deliverables (**MD**) of ELAN are:

- 1. **MD**: Development of a **Web site** to centralize and disseminate the information relevant to the fields covered by ELAN.
- 2. MD: Development of **databases** and code repositories.
- 3. **MD**: The **final report** of the ELAN activity including:
 - Priorities of R&D with eventually proposals of JRA or DS needed in the fields covered by ELAN ;
 - The status of the state-of-the-art at the time of the final report, on LTECNC, LTECSC, BDYN, INSTR and ANAD.
 - Possible synergies between different techniques of acceleration.

Intermediate Deliverables (ID) will also be provided by:

- The proceedings of the workshops
- Progress reports on the various activities
- The annual report of the ELAN network

8. N1.3.2 Milestones

The milestones (**MS**) will be constituted by the yearly ELAN general meetings, the specialized work package meetings or workshops, and courses (dissemination of knowledge) held during the 5 year period of the CARE project. They will also include the deployment of Web sites and code repositories with continuous updating.

The following tables summarize the ELAN deliverables and milestones.

WP	Task		Year 1	Year 2	Year 3	Year 4	Year 5
	Review of all ELAN activities	Period	•				
All	Dissemination of knowledge	MS	Annual meeting	Annual meeting	Annual meeting	Annual meeting	Annual meeting
	Č	ID/MD	Web Site	Annual Report	Annual Report	Annual Report	Final Report
	Understanding the two-beam technique as a solution for Understand the gradient limits of NC structures assoc structure engineering. Improvement of the present test for other applications. Identify the points, which are common	iated with acility use 1 to all NC	dark current, RF d for beam manipu	break-down, surface lation, structure pro-	ce field and structu ptotype powering, an	re geometry. Gain nd equipment tests,	experience on NC
	Periodic review of the test facility (CTF3) results at	Period	<				→
	the yearly Collaboration Meetings (CM)	MS	СМ	СМ	СМ	СМ	СМ
	the yearly contabolation weetings (CW)	ID	Proceedings	Proceedings	Proceedings	Proceedings	Proceedings
		Period		◀			
	Monitoring of WP activity and suggestions	MS		Workshop	Workshop	Workshop	Workshop
		ID		Report	Report	Report	Report
	Identification of topics to be addressed and of the	Period	\longleftrightarrow				
	topics common to WP1 and WP2. Review of the	MS	Coordination				
Ŋ	available data and results on these topics	ID	Report				
LTECNC	Identification of possible benchmarks. Define the	Period	\leftarrow	• 			
IE	work plan and documentation (data base)	MD		Data Base			
Ĺ		ID	Work plan	Documentation			
	Review of results obtained with structure	Period			•		
	prototypes (including US labs).	MS				Review	
		ID D i l				Report	
	Proposals for possible complementary JRA and	Period					
	DS.	MS		Proposals JRA			
		ID D i 1		Report			
	Densharentes and marianted and mouth alon marisited	Period MS		-	D		
	1				Review	Dement	
		ID Dania d				Report	
	Review on sources including the outcome of photo-	Period		Deview			
	injector R&D for the drive-beam	MS ID		Review	Derrert		
					Report		

WP	Task		Year 1	Year 2	Year 3	Year 4	Year 5					
	The work package is aimed at improving existing technology to its limits and to evaluate new materials for application in accelerators. The coordination in this work-package will allow well-defined R&D programs to share the workload between different institutes. Additionally, a comparison between the standard technology available today and possible alternatives is needed. This would allow one to increase either the performance and the reliability of the technology, or a more cost efficient approach. In this way each subsystem from the accelerating structure to the power source will be reviewed and can be optimised in this framework. The coordination will avoid duplication of developments. A database on SRF related documents will serve to ease distribution of the information. The work package will also serve to include industry into the R&D effort by introducing training courses thus allowing one to transfer knowledge from institutes to the industry. Also, new developments in technology will be reviewed for industrial manufacturability											
	Coordination of R&D	Period MS ID	↓ Workshop	Workshop	Workshop	Workshop	Workshop					
	Dissemination of knowledge Courses on SC technology	ID Period MS	Proceedings	Proceedings Course	Proceedings	Proceedings	Proceedings					
CSC	Data base on SRF	ID Period MD		Data Base	Proceedings							
LTECSC	ID Documentation Strategy for R&D											
	Cavity Reliability Roadmap for coupler R&D Manufacturability of modules Machine protection	Period MS ID	—	Workshop Reports								
	Surface treatments for cavities Reliable klystrons	Period MS ID			Workshop Report							
	Material research on Nb sheets	10			noport							
	Evaluation of quality control	Period MS ID	•	Workshop	Report							
	Evaluation of cleaning methods	Period MS ID	•	Workshop	Report	Workshop	Report					

	Roadmap to fabrication					
	Evaluation of standard methods versus alternative	Period				
		MS	Workshop		Workshop	
	ones	ID		Report	Report	
7 \		Period	◀			
CSC	Evaluate thin film methods	MS		Workshop	Workshop	
EC		ID			Report	Report
LTE	Comparison of power sources	Period	←			
	Comparison of power sources, Cost efficiency	MS		Workshop		
	Cost efficiency	ID			Report	
		Period	<			
	Alternative cavities, feasibility study	MS		Workshop		
		ID		Report		

WP	Task		Year 1	Year 2	Year 3	Year 4	Year 5
	Form a working group, which helps to review, prioritise the performance of tuning, also in the presence of dynam Review Committee. The working group should also he coordinate integration of the codes into one common f accelerators simpler, reduce redundant effort and allow codes by comparisons with other codes and experiment extension of the codes to cover the relevant beam physics effort and help to achieve better coverage of all re- A part of this effort will take place in a worldwide interna-	tic imperfe lp identify ramework. in particul tts and pro- s effects and levant bed	ections, was one of the ring the required per Agree on standard lar universities to me ovide centralised do a the implementation of physics. Contrib	the urgent R&D iter erformance of the ls for the necessar pre easily contribu pocumentation of the n of feedback syste	ns identified in the instrumentation. P y interfaces. This y te to beam dynamic ese. This will foste ms and tuning proc	International Linear rovide a common c will make integrated s studies. Coordinat er the reliability of redures. This will als	Collider Technical ode repository and simulations of the e verification of the codes. Coordinate o reduce redundant
		Period	\longleftrightarrow				
	Start identifying beam studies, catalogue existing codes and agree on program repository	MD	Data Base				
Z		ID	Documentation				
BDYN	Establish list of priorities, start collection of codes. Identify interfaces, benchmarks, code extensions	Period	\longleftrightarrow				
B		MS	Workshop				
	identify interfaces, benefiniarks, code extensions	ID	Report				
		Period	•				
	First results. Priority of tasks established	MS		Workshop			
		ID		Report			
	Documentation on interfaces. Results on high	Period	◀				
	priority benchmarks documented. New milestones			Workshop	Workshop		
	defined	ID		Proceeding	Proceeding	Report	
	Final report summarising status of beam studies	Period MS	4				
	with an intermediate progress report			Workshop		Workshop	
		ID			Report		Report

WP	Task		Year 1	Year 2	Year 3	Year 4	Year 5
	Form a working group, which helps to review, prioritis Improving the availability of information on test faciliti performance will provide valuable information to group accelerator simulations. The coordination and clarification the cross checking of instrument performance will increa- communications with industrial companies will help to en-	es will all os develop on of R&L ase the co	low effective use a bing such diagnosti goals will ensure on fidence in the med	nd development of ic and improve th a more effective u asured performan	of such facilities. Th ne accuracy of such se of resources and nee of state of the ar	e creation of a da data used with th reduce duplication t devices. Encoura	tabase of diagnostic the important area of of effort. Organising the ging and organising
1	Discomination of Impoulation	Period	←→				
	Dissemination of knowledge Create a web site	MD	Web Site				
	Create a web site	ID	Report				
		Period	\longleftarrow				
	Data base of test facilities	MD	Data Base				
		ID	Documentation				
		Period	◀		>	•	
- 4	Data base of diagnostics performance				Data Base		
TR					Documentation		
INSTR	Coordination of R&D goals. Define key diagnostic	Period	←				
Η	requirements, identify high risk instruments for LC,	MS		Workshop			
	and roadmap for key instruments	ID	Reports				
	Coordinated prototype R&D programme.	Period					>
	Cross checking of instrument performance	MS		Proposals	Workshop	Workshop	Workshop
	and benchmarking in existing facilities	ID		Reports	Report	Report	Report
	Promote industrial, European and	Period	<		>	•	
	International collaborations	MS		Workshop			
		ID		Report	Proposal		
		Period					
	Industry day	MS		Industry day		-	
		ID			Report		
	Satellite meetings with international	Period MS					
	Instrumentation conferences		Conferences	Conferences	Conferences		
		ID		Proceedings	Proceedings	Proceedings	

WP	Task		Year 1	Year 2	Year 3	Year 4	Year 5
	Form a working group to identify the most efficient of Foster collaboration in a community of plasma phys simulation tools. Define a strategy to achieve a joint collaborations between plasma physicists and accel	icists scattered proof-of-prind	l in different institu ciple experiment in	utes or universities i European maintair	n Europe, using var 1 European competi	rious types of laser f tiveness in this rese	facilities and arch area. Initiate
	Coordination of R&D	Period	•				
-		MD				Data Base	
	Iltra-short pulse injectors	Period	4		TT T 1 1		
	Compare all-optical and RF injector	MS	Workshop		Workshop		
		ID		Proceedings		Report	
	Extended plasma wave excitation Compare laser guiding techniques	Period	◀			►	
_		MS		Workshop			
A D		ID			Report		
ANAD	Identify diagnostics needed for	Period	◀			▶	
	Identify diagnostics needed for plasma based accelerators	MS	Workshop		Workshop		
	plasma based accelerators	ID			Report		
		Period			-	▶	
	Electron beam focusing and propagation	MS	Workshop		Workshop		
	in a guided plasma wave	ID	Proceedings		Report		
	Description of the second strength (DS) to	Period			-		•
	Prepare an integrated experiment (DS) to	MS		Workshop		Workshop	
	demonstrate GeV acceleration in 10cm	ID		Proceedings		Report	
		Period					
	Prospective ideas for a design study in collaboration with BDYN.	MS	Workshop		Workshop		Workshop
	Collaboration with BD I N.	ID	Proceedings		Proceedings		Report

8. N1.4 Expected outcome

The first outcome of ELAN will be participation to the gathering of a community and launching of a Design Study in view of a TeV Linear Collider in the next months.

Generally speaking ELAN should have the following impacts:

- Better coordination of R&D efforts on electron accelerators (integrating effect), at the European level but also within countries (promoting new centres of competencies)
- Additional resources from the European Community will mobilize new laboratories, new people and will encourage increased investments from local authorities
- Raising the level of competence in electron accelerators: training by experts, participation to research infrastructures, exchanges
- Stimulating effect on European industry
- Lowering the cost of basic accelerator components which will allow one to develop these instruments in a wider environment (e.g. XFEL)
- Coordination of efforts between accelerator experts and laser plasma specialists working on new sources and new schemes of acceleration
- Improved instrumentation in accelerator physics

Another expected important output will be proposals for new JRA needed for ther Linac R&D and possibly a Design Study to test new ideas on acceleration techniques.

8. N1.4.1 Measuring the impact of the network activity

A measure of the success and impact of the network activity will be given by the number of:

- · documents on new ideas proposed for operating and improving infrastructures
- new initiatives for R&D to solve the problems encountered
- publications and the frequency of quotation of these publications
- proposed Ph/D theses arising from the network
- new collaborations among the participants
- proposed design studies arising from the network

8. N2 Activity N2: Beams in Europe for Neutrino Experiments (*BENE*)

8. N2.1 Description and objectives of the activity

The recent discovery of neutrino (v) transitions is one of the most important results in physics in the last ten years and has generated considerable interest worldwide. Much remains to be discovered about neutrino oscillations and this will require dedicated neutrino beams

The present European experimental programme (CNGS, CERN Neutrino beam to Gran Sasso) aims at validating the existing results and will begin data taking in 2006. To go beyond and fully exploit the physics potential of neutrino oscillations requires the realization of one or more new neutrino facilities, with higher beam power, better defined spectrum and flavour composition, allowing experiments with higher statistics and reduced systematic errors, in optimal conditions of beam energy and distance from the source.

• <u>The first objective</u> of the BENE network is to establish a roadmap to upgrade the current CNGS facility and for the design and the construction of new ones.

In the short term, the improvement of the performances of the approved program CNGS facility will be vigorously investigated. For the longer term, since 1998 contacts have been established between laboratories and universities around Europe with the goal of preparing and carrying out the R&D and the studies necessary to propose the next major neutrino facility by the time of the start-up of LHC. The three facilities presently considered are:

- i) a conventional but very intense muon-neutrino beam (Superbeam) of the CNGS type, using a new high power proton accelerator;
- ii) a Neutrino Factory, in which the neutrinos are produced by the decay of muons in a storage ring;
- iii)a Beta Beam, in which electron-neutrinos are produced by the decay of radioactive nuclei in a storage ring.
 - <u>The second objective</u> is to assemble a community capable of sustaining the technical realisation and the scientific exploitation of these facilities.

To compare the physics reach of these approaches and to monitor the rapid evolution of the field, it is important to coordinate and integrate accelerator and particle physics studies, leading to a comparison of the technologies, costs, risks, and physics results.

• <u>The third objective</u> is to foster a sequence of prioritized and coordinated initiatives capable to establish and propose the necessary R&D activities.

By achieving these objectives, BENE will create a strong network of accelerator and particle physicists working together to build a coherent programme to study the physics of neutrino oscillations in Europe. The network will also investigate synergies of each approach with other domains of particle and nuclear physics as well as potential applications for the High-Intensity Pulsed Proton Injector (HIPPI), the Superconducting RF (SRF) and the Next European Dipole (NED) Joint Research Activities.

8. N2.2. Participants in the activity

The 13 contracting participants and the 21 associated institutes of this network are listed in Tables 8.N2.2a and 8.N2.2b, with their involvement in the work packages described below. They represent 11 countries plus the international laboratory CERN including large institutes such as CCRLC, CEA or INFN and small universities, fulfilling the goal assigned in FP6: dissemination of knowledge and expertise from large to medium size laboratories and institutes.

Participant number	Participant	PHYSICS	DRIVER	TARGET	COLLECTOR	NOVEL NEUTRINO BEAMS
1	CEA	Х	Х	Х	Х	Х
2	UCLN	Х				X
3	CNRS	Х			X	X
	CNRS Orsay	X			X	X
	CNRS LPHNE	X			X	
	CNRS CENBG	X				
	CNRS Lyon	X			X	
	CNRS LCSC					X
4	GSI					X
7	FZJ		Х	Х		
8	TUM	Х				Х
10	INFN	Х	Х	Х	X	Х
	INFN-LNF	X				X
	INFN-Ba	X				X
	INFN-Ge					X
	INFN-GS	X				
	INFN-LNL	X	X			X
	INFN-Mi	X				X
	INFN-Na	X				X
	INFN-Pa	X				X
	INFN-Pi	X				
	INFN-Tr	X				X
	INFN-Ro3	X				X
	INFN-To	X				
16	CSIC	Х				
	UBa	X				
	IFIC	X				
	UAM	X				
17	CERN	Х	Х	Х	X	X
18	UNI-GE	Х		Х	X	Х
19	PSI			Х		
20	CCLCR	Х	Х	Х	X	X
21	ICL	Х		Х		X

Table 8.N2.2a: List of contracting participants

Participant number	Participant	PHYSICS	DRIVER	TARGET	COLLECTOR	NOVEL NEUTRINO BEAMS	Associated to
13	UnO	Х	Х	Х	Х	Х	CERN
15	IPUL			Х			FZJ
16	NRG			Х			FZJ
22	UNI-Bern	Х					UNI-GE
23	UNI-Neuchatel	Х					UNI-GE
26	PIUZ	X				X	UNI-GE
27	BAT	Х		Х			ICL
28	BRU	X				Х	ICL
29	CAM	X					ICL
31	DUR	X					ICL
32	EDIN	Х					ICL
33	GLA	X				Х	ICL
35	QMUL	X					ICL
38	ULI	Х				Х	ICL
39	UOX	X		Х		Х	ICL
40	SHEF	X		Х		Х	ICL
41	SOTON	Х					ICL
43	SUSS	Х					ICL
44	FNAL	Х	Х	Х	Х	X	CERN
45	LBL	Х				Х	CERN
46	BNL	Х	Х	Х	Х	Х	CERN

Table 8.N2.2b: List of associated institutes

8. N2.3 Outline of the implementation plan for the full duration of the activity (including milestones and deliverables)

The objectives of the BENE network will be achieved by

- regular general and specialized meetings and Workshops
- the development of a Web site
- the development of common databases and code repositories

The work has been organized in five work packages covering the subsequent topics:

- WP1: Physics demands on v accelerator facilities (PHYSICS).
 - PHY1: establish the widest consensus on general neutrino physics requirements
 - PHY2: define the ultimate scientific reach of the present and future upgrades of CNGS
 - PHY3: " " of conventional Superbeams
 - PHY4: " " of Neutrino Factories
 - PHY5: " of Beta beams
 - PHY6: provide recommendations for each option on beam energy, baseline, beam structure, composition, flux and monitoring in view of minimizing the systematic errors
 - PHY7: formulate a strategy of measurement of all oscillation parameters based on the four options PHY2-3-4-5 and synergic combinations among them.

• WP2: High Power proton drivers (DRIVER).

- DRI1: compare the merits of Superconducting Proton Linacs and Rapid Cycling Synchrotrons
- DRI2: evaluate the impact of both on the performance of the CNGS and of future Superbeams
- DRI3: propose a choice, based also on the HARP data presently being analysed
- DRI4: evaluate approaches to intense H- ion sources, high power injectors
- DRI5: assess HIPPI results on Fast beam choppers and Normal & Super Conducting Accelerating Structures
- DRI6: provide a recommendation on technologies for all driver components.

• WP3: High power targets (TARGET).

•

- TAR1: examine the various solutions (molten metal jet, multiple helium cooled granular targets and rotating metal bands) being proposed for a multi-MW target
- TAR2: study pulsed heating, high radiation levels and mechanical stress from thermal shock waves
- TAR3: integrate designs with those of the surrounding pieces of equipment, including the collector and the beam dump
- TAR4: address safety, radioactive disposal, remote handling and maintenance issues
- TAR5: select one or a few viable solutions.

WP4: High power collection systems (COLLECTOR).

- COL1: assess the unprecedented challenges of thermo-mechanical stresses and fatigue
- COL2: " of radiation damage
- COL3: study implementation of high repetition rate of electrical discharge
- COL4: define optimal integrated target & collection for Superbeams (horns)
- COL5: " " Neutrino Factories (solenoids)

• WP5: Novel Neutrino Beams (NOVEL NEUTRINO BEAMS).

- NNB1: collect and disseminate knowledge.
- NNB2: promote further initiatives and funding prospects in these novel sectors

- NNB3: focus specifically on the front stage of a Neutrino Factory (the muon beam, produced from the solenoidal pion decay channel) examining specific muon ionization cooling schemes
- NNB4: focus in detail on options for the end stage of Neutrino Factories for muon acceleration (Recirculating Linac and Fixed Field Alternating Gradient accelerators) and storage
- NNB5: produce a road-map for both a high and a low energy Beta-beam facility in Europe, assessing results from several technical tests planned at existing facilities.

8. N2.3.1 Deliverables

The Main Deliverables (**MD**) of the BENE network are:

- 1. **MD:** Development of a **Web site** to centralize and disseminate the information relevant to BENE and its Work Packages
- 2. **MD:** The **final report** of the BENE activity, including
 - The worldwide studies relevant for improving performance of the CNGS and achieving superior neutrino facilities beyond it
 - The status of the state-of-the-art at the time of the final report, on PHYSICS, DRIVER, TARGET, COLLECTOR and NOVEL NEUTRINO BEAMS.
 - A priority list of the required R&D and a roadmap for carrying them over
 - A global road map specifying the optimum neutrino oscillation programme for Europe and the path to design and construction of the superior neutrino facilities required

In addition, a series of Interim Deliverables (ID) will be provided. They will be constituted by

- Proceedings or Summaries of the topical meeting and workshops
- Proposals for Design Studies and R&D
- the 18 month Interim Report
- the annual report of the BENE network

8. N2.3.2 Milestones

The milestones (**MS**) will be constituted by the various general BENE meetings, and the specialized meeting or workshops held during the 5 year period of the CARE project. Europe will host the International NuFact Workshop in 2005 and 2008. These dates are considered also to be milestones for the BENE programme. So will be important steps in the deployment of the Web sites.

The following table shows an outline of the BENE deliverables and milestones.

WP	Task		Year 1	Year 2	Year 3	Year 4	Year 5				
	These activities will be carried out by			S							
		Period	←								
	Review and promote all BENE activities.	MS		Two BENE meetings and one CARE/BENE meeting yearly							
				Organization of			Organization of				
	Organize BENE events and			NuFact05			NuFact08				
	international events.	ID		International			International				
	international events.			Workshop.			Workshop.				
	Dissemination of knowledge			Proceedings			Proceedings				
	Dissemination of knowledge	MD	Web Site				Final Report				
All		Period	•								
AII	Define Parameters and Road	MS	Spring BENE Meeting	Summer BENE Meeting							
	Map to Conceptual Design	ID	Design Studies and R&D Proposals (DS/R&DP)	Interim Report (IR)							
		Period					→				
	Assess Status of Physics Studies and Conceptual Designs: road	MS			Summer BENE Meeting	Summer BENE Meeting					
	Map to Technical Design	ID			Updates to IR and DS/R&DP	Updates to IR and DS/R&DP					

WP	Task		Year 1	Year 2	Year 3	Year 4	Year 5
	During the first 18 months the PHYSICS group measurement of oscillation parameters will be p will be proposed in the end, properly revised with	roposed f	or careful technical ass	essment. The experimenta	l strategy will be	e refined in the follo	
	Monitor the development of the physics of	Period	4				
	neutrino of their transmutation in flight (neutrino oscillation).	MD	Web Site (early 2004)				
	Establish Website. Steer accelerator and detector R&D.	ID	Neutrino Unbound WebSite				
	Plan strategy of unambiguous measurement	Period	4				
PHYSICS	of all oscillation parameters using complementarity and sinergies between optimized 1) conventional Superbeam 2)	MS	Topical Workshop (Dec)	Summer BENE meeting			
Hd	NuFact 3) BetaBeam. Assess their optimal physics potentials with uniform comparison criteria of different beam baseline detector configurations	ID		Workshop Proceedings Physics Section of Interim Report			
	Revise periodically IR strategy weighing	Period		—			
	detector masses, resolutions, backgrounds vs beam flux, energy, composition.	MS			1	Topical Workshop (Sep)	
	Define requirements on ancillary experiments and on beam monitoring for control of systematic errors.	ID				× 1/	Workshop Proceedings

WP	Task		Year 1	Year 2	Year 3	Year 4	Year 5
	During the first 18 months the DRIVER choice of the energy of the DRIVER will Topical Workshops will be finally held du individual components. The final report w	be the ma uring the la	in goal. The following st Summer BENE meet	12 months will bring a rea ing sto review and assess p	commendation for the d	choice of the technology	v (SPL vs RCS). Three
	Assess preliminary HARP results.	Period			•		
	Define criteria of SPL vs RCS comparison and perform it	MS	Spring BENE meeting	Summer BENE meeting			
ER	preliminarly Review HIPPI JRA annual report Identify R&D plans beyond HIPPI. Produce interim report.	ID	DS/R&DP in the Driver Sector	Driver Section of IR			
DRIVER	Assess final HARP results. Review	Period		+			
Ē	HIPPI JRA annual report. Perform	MS			Topical Workshop		
	final SPL vs RCS comparison. Hold first topical workshop and produce report and recommendation on the choice of the technology.	ID			Workshop Proceedings		
	Assemble results of studies for	Period			—		
	various DRIVER components.	MS				Topical Workshop	Topical Workshop
	Revise R&D plans. Produce final report on the status of studies towards driver design	ID				Workshop Proceedings	Workshop Proceedings

WP	Task		Year 1	Year 2	Year 3	Year 4	Year 5
	It will work in close connection with WP4. Dur view of the merits of the different target schem Neutrino Factory will be its task in the following	nes and of	the area will be its Inte	rim goal. Assessment of R			
	Prepare Web Pages. Review present status	Period	•		•		
	of high power target studies in & out of the neutrino sector. Identify nature, location and first list of experiments at a TargetTestArea (TTA) and propose it. Attack safety issues. Hold International Workshop on Target & Collectors and assess merits of different schemes. Produce IR.	MS	Spring BENE meeting	International Workshop on Target & Collectors			
TARGET		ID	DS/R&DP in the Target Sector (TTA)	Proceedings of Workshop Target Section of IR			
	Revise periodically IR. Revise Design Study and R&D progress at TTA and	Period					
	formulate new plans. Study specific Superbeam and Neutrino Factory options in the target sector. Hold International	MS				International Workshop on Target & Collectors	
	Workshop on Target & Collectors and prepare specific final recommendations for both options above. Produce FR.	ID				Workshop Proceedings	

WP	Task		Year 1	Year 2	Year 3	Year 4	Year 5
	It will work in close connection with W consensual view of the merits of the dig Superbeam and Neutrino Factory will be	ferent tar	get schemes and of the are	ea will be its Interim goa	l. Assessment of		
	Evaluate progress on power supply	Period	4				
	design, on studies of properties of irradiated materials and of mechanical and thermal stresses. Identify nature, location and first list of experiments at a CollectorTest Area (CTA) and propose it. Attack safety issues. Hold International Workshop on Target & Collectors and assess merits of different schemes. Produce IR.	MS	Spring BENE meeting	Int. Workshop on Target & Collectors			
COLLECTOR		ID	DS/R&DP in the Collector Sector (CTA)	Proceedings of Workshop Collector Section of IR			
	Revise periodically IR. Revise	Period					
	Design Study and R&D progress at CTF and formulate new plans. Study specific Superbeam and Neutrino Factory options in the collector	MS				Int.Workshop on Target & Collectors	
	sector. Hold International Workshop on Target & Collectors and prepare specific final recommendations for both options above.					Workshop Proceedings	

WP	Task		Year 1	Year 2	Year 3	Year 4	Year 5
NOVEL NEUTRINO BEAMS	During the first 18 months the NOVEL I prospecs in the interim reprt. Assessment the focus of the final report. This will inclu	of R&D a	nd specific recommend	ations for both Neutrino Factor	y and Beta beam	will be its task in	
	Definition of expanded WP	Period	•				
	membership and implement dissemination mechanisms. Review of existing designs for NuFact (both front and back end) and Betabeams, beyond target and collection. Hold specific Betabeam Workshops in synergy with other adjacent physics communities. Identify Design Studies and R&D experiments needed and propose them. Assess and influence MICE measurement plans. Produce IR.	MS	Spring BENE meeting Betabeam Workshop	Summer BENE meeting Betabeam Workshop	Betabeam Workshop	Betabeam Workshop	
		ID	DS/R&DP in the Novel Beams Sector Betabeam Workshop Summary	Novel Neutrino Beams Section of IR Betabeam Workshop Summary	Betabeam Workshop Summary	Betabeam Workshop Summary	
NO	Revise periodically IR. Revise	Period					
	Design Study and R&D progress. Assess MICE results. Hold a number of informal Workshops dedicated to this purpose. Assemble status of	MS		Workshop on Front & Back End of a Neutrino Factory			Summer BENE meeting
		ID		Workshop Summary			

8. N2.4 Expected outcome

Such a coherent and coordinated European program on neutrino beams will involve the large majority of the European experts in the field.

- It will bring an unprecedented collaboration between accelerator and particle physicists.
- It will provide the critical mass necessary to develop an attractive and ambitious program allowing in due course to design and construct cutting-edge infrastructures.
- It will thus strengthen the European role in this sector.
- The expertise and skills of each participant will be enhanced by the contact with worldwide experts and improved communication.
- Dissemination of knowledge will be one of BENE's main concerns. We plan to apply for a Marie Curie fellowship for a postdoc who, in addition to participating to the BENE studies, would strengthen our effort in:
 - the centralization, maintenance, upgrade and distribution of common simulation software
 - the development of the BENE Website,
 - including the management of the BENE documentation.

The knowledge will be shared through active participation to international worldwide conferences and workshops. Very limited resources are presently available in Europe for neutrino initiatives, due to the difficulties of LHC funding. The EC support requested here will add a decisive value in view of the strategic goal of producing a timely European initiative and leadership in the fundamental area of neutrino science.

8.N2.4.1 Measuring the impact of the network activity

Appropriate ways and parameters to monitor the impact of BENE will be the number of

- 1) participants to Muon Weeks and BENE Workshops
- 2) documents and tools produced
- 3) new collaborations among participants
- 4) novel ideas proposed to improve operation and performance of existing infrastructures and of R&D
- 5) design study proposals generated by BENE. The approval of each proposal by a host laboratory will require the favourable assessments of a peer review panel and will provide direct evidence of the network impact.
- 6) quotations of BENE documents.

8. N3 Activity N3: High-Energy High-Intensity Hadron Beams (*HEHIHB*)

8. N3.1 Description and objectives of the activity

In 2007, the large hadron collider (LHC), currently under construction at CERN, will push the frontier for high-energy particle physics to unprecedented limits. It will provide particle collisions with centre of mass energies (14 TeV) and beam intensities approximately one order of magnitude above those at existing hadron colliders. This increase in performance required a total development time of more than 20 years from the first conceptual design until its final completion. At the time of the first design proposals, the required technologies for constructing and operating the LHC machine and its pre-injectors were not yet available and had to be developed after most of the machine parameters had been determined. Such a design and construction process is only possible:

- if the technical limits are well understood,
- if the experience from the construction and operation of existing machines indicate how the remaining obstacles can be overcome.

Planning for hadron colliders with specifications well above those of the LHC requires the identification of the main issues and carrying the related necessary R&D.

• <u>The first objective</u> of the HEHIHB network is to set the framework, and develop a coordinated program for accelerator R&D and experimental studies in existing machines relevant for achieving High Energy and High Intensity Hadron Beams

The construction of the LHC is done in an international collaboration involving a large number of major international laboratories like CERN and CEA in Europe, FNAL, BNL and LBNL in the USA and KEK in Japan. Preparing the roadmap for future high-energy and high-intensity hadron beams requires a similar or larger collaboration of international laboratories. The major High-Energy Physics laboratories in the USA are currently setting up a program for inter-laboratory collaborations towards a future high-energy hadron collider with applications for funding by the DOE (US-LARP = US LHC Accelerator Research Program).

CARE provides an excellent opportunity for generating a similar structure within Europe that can facilitate the collaboration between US and European laboratories over the next 5 years.

• <u>The second objective</u> is to integrate and coordinate the relevant studies on High Energy and High Intensity Hadron Beams done at the major laboratories as well as the smaller laboratories and universities.

These studies can help deciding which technologies provide viable options for such a project. The HEHIHB network work will also investigate potential applications for the Next European Dipole (NED Joint Research Activity) and High-Intensity Pulsed Proton Injector (HIPPI Joint Research Activity).

Finally after achieving the previous objectives,

• <u>The third objective</u> is to establish a road map towards the improvement of the performance of existing hadron beam facilities in Europe and the realization of High-Energy High-Intensity Hadron colliders.

It is worthwhile noting that studies towards high-energy high intensity hadron beams can also have a wide range of applications and hence the network will contribute actively to the dissemination of the gathered information.

8. N3.2. Participants in the activity

The 10 contracting participants and the 13 associated institutes to this network are listed in Tables 6.N3.2a and 6.N3.2b. They represent 13 countries plus the international laboratory CERN including large laboratories such as CCRLC, CEA, DESY or INFN, and small universities, fulfilling the goal assigned in FP6: dissemination of knowledge from large to medium size laboratories and institutes.

Participant number	Participant	AMT	ABI	APD
1	CEA	Х		
4	GSI	Х	Х	Х
5	DESY		Х	X
10	INFN	Х		Х
	INFN-Ge	X		
	INFN-LNF			X
	INFN-Mi	X		
	INFN-Na			X
	INFN-Sal			X
11	TEU	Х		
15	WUT	Х		
16	CSIC			X
	IFIC			X
17	CERN	Х	Х	X
19	PSI		X	
20	CCLRC	Х		

Table 8.N3.2a: List of contracting participants

Table 8.N3.2b: List of associated institutes

Participant	Participant	AMT	ABI	APD	Associated
number					to
2	ESRF		Х		CERN
4	TUBE			Х	CERN
6	TEMF			Х	DESY
9	FZK	Х			DESY
12	ENEA	Х			CERN
14	KEK	Х			CERN
19	JINR	Х			CERN
20	IHEP			Х	CERN
21	UPSA		Х		CERN
24	CRPP	Х			CERN
44	FNAL	Х	Х	Х	CERN
45	LBNL	Х	Х	Х	CERN
46	BNL	Х	Х	Х	CERN

8. N3.3 Outline of the implementation plan for the full duration of the activity (including milestones and deliverables)

The objectives of the HEHIHB network will be achieved by

- a series of general and specialized meetings and workshops
- the development of the a Web site
- the development of common database and code repositories

The work has been organized in three work packages covering the subsequent topics:

- WP1: Advancements in accelerator magnet technologies (AMT).
 - AMT1: Study the Stability and Quench Limit of LHC-ultimate and LHC-upgrade
 - AMT2: Definition of magnet specification for an SPS upgrade
 - AMT3: Definition of magnet specification for a booster ring in the LHC tunnel
 - AMT4: Comparison of High-Field Magnet Designs and their applications
 - AMT5: Optimisation of the overall cost of the magnets system for a high-energy hadron collider
- WP2: Novel Methods for Accelerator Beam Instrumentation (ABI).
 - ABI1: Studying tools and diagnostic systems for luminosity monitoring and steering
 - ABI2: Studies on the applicability of a wire compensation for long range beam-beam interactions
 - ABI3: Studies on advanced transverse beam diagnostics
 - ABI4: Implementation of fast feedback loops for orbit, coupling and chromaticity control
 - ABI5: Studies on advanced beam halo diagnostics
 - ABI6: Studies leading to remote diagnostics and maintenance of instrumentation devices

• WP3: Accelerator Physics and Synchrotron Design (APD).

- APD1: Interaction Region design for an LHC luminosity upgrade
- APD2: Optics design for booster synchrotrons in the SPS or LHC tunnel
- APD3: Impedance calculations for new experimental beam pipes and booster systems
- APD4: Generation of a structured list of intensity limits for the LHC operation
- APD5: Studies on electron cloud effects for very high-intensity bunches
- APD6: Studies on measurement procedures for non-linear machine parameters
- APD7: Advanced theoretical studies on halo formation and loss mechanisms

8. N3.3.1 Deliverables

The Main Deliverables (**MD**) of the HEHIHB network are:

- 1. **MD:** Development of **Web site** to centralize and disseminate the information relevant to HEHIHB
- 2. MD: Development of centralized database and code repositories.
- 3. MD: A final report including
 - The worldwide studies relevant for achieving High Energy High Intensity hadron beams beyond those provided by the LHC
 - The status of the state-of-the-art at the time of the final report on AMT, ABI and APD.
 - A priority list of the required R&D and a roadmap for carrying them over
 - A road map towards the realization of High-Energy High-Intensity Hadron colliders

In addition, a series of Interim Deliverables (ID) will be provided. They will be constituted by

- the proceedings of the topical meeting and workshops
- the annual report of the HEHIHB network

8. N3.3.2 Milestones

The milestones (**MS**) will be constituted by the various general HEHIHB meetings, and the specialized meeting or workshops held during the 5 year period of the CARE project. It will also include important steps in the deployment of the Web sites, databases and code repositories.

The following table shows an outline of the HEHIHB deliverables and milestones.

WP	Task		Year 1	Year 2	Year 3	Year 4	Year 5
All	Review of all HEHIHB activities. Dissemination of knowledge	Period MS ID MD	Annual meetingAnnual ReportWeb Site	Annual meeting Annual Report	Annual meeting Annual Report	Annual meeting Annual Report	Final meeting Final Report
	During the first year the AMT group will disc issues, low field magnet design issues, synch address them and workshop dates will be dec	rotron rad	iation issues etc). A	n integrated work plan	n will be set and a list		
	Establish list of priorities. The priority	Period					
	list will determine topics and their sequence for the dedicated workshops,	MS					
	(e.g. Sc cable, high field magnet and low field magnet design issues and future collider project).Identification of the main issues of	ID	Report				
		Period					
	progress needed on material and cabling	MS	1 st Topical A	MT Workshop			
AMT	and definition of a roadmap of the required studies and experimental tests	ID	Proceedings of 1 ^s	^t Topical Workshop			
\mathbf{A}	Identification of the main obstacles for	Period		4			
	the generation of High field and/or	MS		2 nd	Topical AMT Works	shop	
	pulsed field and generation of a road map for the required studies	ID			Proceedings of 2 ⁿ	^d Topical Workshop	
	Identification of the main obstacles for	Period				<	→
	the future colliders and the key merit parameters to compare different design	MS				3 rd Topical AN	AT Workshop
	and generation of a road map for the required studies	ID				Proceedings of 3 rd	Topical Workshop
	Generation of internet based databases	Period					
	for SC Magnets and Cables, and on the	MS	Running	database skeleton (m	id-3 rd year)		
	ongoing activities related to super conducting magnet developments.	MD	(Completion of datab	ases (end-3 rd year)		

WP	Task		Year 1	Year 2	Year 3	Year 4	Year 5
	During its first meeting the ABI WP will n interaction and coordination. An integrate them. Workshop dates will be decided for the second seco	ed work p	olan will be set and a li				
	Discussion and definitions of priority	Period	\longleftrightarrow				
	list:	MS					
		ID	Report				
	T1:	Period	\leftarrow	•			
	a) Identification of the main obstacles	MS	1 st Top. workshop				
	b) Definition of a road map for the required studies	ID	Proceedings of 1 st Topical Workshop				
	T2:	Period		←			
	a) Identification of the main obstacles	MS		2 nd Top workshop			
ABI	b) Definition of a road map for the required studies	ID		Proceedings of 2 nd TopicalWorkshop			
	T3:	Period			←		
	a) Identification of the main obstacles	MS			3 rd Top. workshop		
	b) Definition of a road map for the required studies	ID			Proceedings of 3 rd TopicalWorkshop		
	T4:	Period				← →	
	a) Identification of the main obstacles	MS				4 th Top.workshop	
	b) Definition of a road map for the required studies	ID				Proceedings of 4 th TopicalWorkshop	
	T5:	Period				1 1	~~~
	a) Identification of the main obstacles	MS					5 th Top.workshop
	b) Definition of a road map for the required studies	ID					Proceedings of 5 th TopicalWorkshop

WP	Task		Year 1	Year 2	Year 3	Year 4	Year 5					
	During the first year the APD group will discuss and define a priority list with issues requiring a stronger interaction and coordination, e.g. on IR design, collective effects and/or booster synchrotron design. An integrated work plan will be set and a list of 2 or 3 topical workshops will be established to address them and workshop dates will be decided for the different topics, in addition to the annual meetings.											
	Creation of the web site to document APD studies.	Period	←→									
		MD	Web site									
	Catalogue of existing simulation codes	ID	Report									
	Definition of the list of priorities and agreement on a code repository.		\longleftrightarrow									
APD	Proposal for code benchmarks and extensions.		Report									
		Period		$ \longleftrightarrow $								
	First results. Priority of tasks established. Creation of web based code repository.	MD		Code Repository								
	creation of web based code repository.	ID		Report								
	Documentation of results on high-priority benchmarks.	Period		-	>							
	Definition of optics design options for IR layout and booster synchrotrons.First structured list of intensity limits. Definition of possible new milestones.]	Report							

WP	Task		Year 1	Year 2	Year 3	Year 4	Year 5
	Series of 2 or 3 Workshops. The aim of these v capabilities for the optics design and the colle				and luminosity limits impos	sed by the current hardw	vare
		Period	—				
	Workshop on 1 st selected topic	MS	1 st Topica	l Workshop			
D		ID	Workshop	Proceedings			
APD		Period		-			
7	Workshop on 2 nd selected topic	MS			2 nd Topical Workshop		
		ID			Workshop Proceedings		
		Period				\longleftarrow	
	Possible Workshop on 3 rd selected topic	MS				3 rd Top. Workshop	
		ID				Proceedings	

8. N3.4 Expected outcome

One of the main expected outcomes is that the community will be ready to launch a Design Study on the LHC Luminosity and Energy upgrade in due time.

The proposed network will have:

- Identified the most efficient solutions for future high-energy high-intensity proton beams.
- Set the priorities
- Set the organizational framework for these studies
- Created the appropriate tools to collect information and evaluate the various software codes

Furthermore, the network will help in spreading the knowledge and expertise available at the laboratories with operating accelerators to smaller institutes and Universities that can't maintain their own accelerators.

The HEHIHB network will help in bringing together different communities such as highenergy physics (HEP) and fusion physics and facilitate the exchange of technical expertise between them (e.g. shared research on high-field superconducting magnets).

Finally, coordinating the research studies related to high-energy and high-intensity hadron beams and integrating laboratories on a European-wide scale in Europe will also lead to the following outcomes:

- Expose small laboratories and institutes to the frontiers of high-energy accelerator research
- Offer new training and job opportunities for young people in particular within Universities and small laboratories raising the European level of competence and its sustainability
- Provide improved techniques and competence for the operation of existing accelerator facilities and thus a more efficient use of the existing infrastructure
- Set a framework similar to the one being set up by the US laboratories, enhance the synergies and facilitate the collaboration between European and US laboratories
- Stimulate the exchange of knowledge and expertise between research laboratories and industry and thus provide a stimulating effect on the European industry
- Open the door for very high-energy physics after the LHC, contributing to ensure the future of High Energy Physics in Europe and in the World

8. N3.4.1 Measuring the impact of the network activity

A measure of the success and impact of the network activity will be given by the number of:

- Documents describing the current expertise in high-energy high-intensity hadron beams.
- Documents describing the identified limitations for pushing beam intensities and energies above those currently at hand in existing machines.
- Documents describing new ideas for operating and improving the existing infrastructure.
- Documents describing new initiatives for R&D work for solving the identified limitations for the beam intensities and energies.
- New collaborations among the participants and inter laboratory sharing of existing facilities.
- Design studies for future machines and equipment that can increase the achievable intensities and energies in hadron beams.
- Proposed new Ph.D theses arising from the network.

8. R1 Activity JRA1: Superconducting Radio Frequency (SRF)

8. R1.1 Description and objectives of the activity

Superconducting accelerating systems have been in use successfully for electron and heavy ion accelerators. Although the SRF (Superconducting Radio Frequency) technology has reached a state of maturity, substantial improvements are required to exploit the intrinsic potential of the superconducting material. Great effort was started within the framework of the international collaboration TESLA. The superconducting test accelerator TTF and all necessary infrastructures for the preparation of superconducting resonators were set up and have been in operation for several years. A remarkable increase of the accelerating gradient was achieved. Further improvements up or near to the maximum intrinsic properties of the superconducting Niobium material are expected by consequent continuation of the R&D effort. In SRF, a joined European R&D activity is proposed for the development of novel cavity fabrication and preparation techniques and for the development of cheaper, more reliable ancillary RF components (tuners, couplers etc...). This will result in prototype components to be tested under realistic operating conditions in the TTF linac and it will result in the improvement of the performance of this infrastructure. New SRF accelerator projects like TESLA and the superconducting X-ray FEL will directly benefit from these expected improvements.

The basic objectives of the proposed research activity are

- to increase the accelerating gradient from 25 to 35 MV/m and
- to increase the quality factor from 5×10^9 to 2×10^{10} ,
- to improve the reliability, operating performance and availability of the superconducting accelerating system and
- to achieve a cost reduction of the SRF cavities and their associated components. .

The main steps towards these goals are

- ✓ implementation of electro-polishing for better surface quality (roughness <1 μ m),
- \checkmark exploration of new fabrication methods such as vacuum arc coating,
- \checkmark improving the methods for quality control (sensitivity),
- ✓ developing improved input couplers,
- ✓ developing new cold tuner systems,
- ✓ improving the reliability of RF components and developing low-cost prototypes,
- ✓ performing integrated tests of cavities, couplers, tuners, under development

The objectives mentioned above are treated within 10 work packages, which are described in more detail in the section on the implementation plan. An eleventh work package will cover the management of SRF.

Work Package	Full name	Short name
WP1	Management and Communication	M&C
WP2	Improved Standard Cavity Fabrication	ISCF
WP3	Seamless Cavity Production	SCF
WP4	Thin Film Cavity Production	TFCP
WP5	Surface Preparation	SP
WP6	Material Analysis	MA
WP7	Power Couplers	COUP
WP8	Cavity Tuners	TUN
WP9	Low Level RF	LLRF
WP10	Cryostat Integration Tests	CIT
WP11	Beam Diagnostics	BD

Work packages, full names and short names in JRA1

8. R1.2 Participants in the activity

Table 8.R1.2a lists the participants and their involvement in the work packages.

Table 8.R1.2b shows the detailed involvement of each participant, together with an estimate of their total contribution to the activity in person months for the duration of the project.

Participant number	Participant	WP1: M&C	WP2: ISCF	WP3: SCP	WP4: TFCP	WP5: SP	WP6: MA	WP7: COUP	WP8: TUN	WP9: LLRF	WP10: CIT	WP11: BD
1	CEA					X			X		X	Х
3	CNRS	Х						X	Х		X	
6	DESY	Х	Х	X		X	X			X		
10	INFN		Х	X	X	Х	X		X			Х
	INFN-LNL		X	X		X	X					
	INFN-MI		X						X			
	INFN-RO2				X							X
	INFN-LNF											X
12	TUL								Х	X		
13	IPJ		Х		X							
14	WUT-ISE									X		
19	PSI									X		

 Table 8.R1.2a: List of participants and their involvement in the different work packages.

Participant number	Participant	WP/Topic	Roles	Person month
		WP5/SP	EP on single cells	83
		WP8/TUN	Design and fabrication of new piezo-electric tuners	16
1	CEA	WP10/CIT	Preparation of cryogenic test facilities. Tests of prototypes in	63
		WP11/BD	Design and fabrication of novel BPM.	58
		TOTAL	Permanent staff 136, temporary staff 84 person month	220
		WP1/M&C	M&C	8
		WP7/COUP	Coulpler development	258
3	CNRS-Orsay	WP8/TUN	Test of tuners	24
5	CITRS-Ofsay	WP10/CIT	Cryostat integration test	36
		TOTAL	Permanent staff 278, temporary staff 48 person month	326
		WP1/M&C	M&C	112
		WP2/ISCF	EB welding	80
	ľ	WP2/ISCF	Reliability analysis	39
		WP3/SCF	SCP by hydroforming	45
		WP5/SP	EP on multicells	96
6	DESY	WP5/SP	Dry ice cleaning	90
U	DESI	WP5/SP	DC FE studies on Nb samples	40
		WP6/MA	SQUID scanning	96
		WP9/LLRF	Detector of single bunch transient	62
		WP9/LLRF	Design of reliable, cost optimal LLRF system	44
		TOTAL	Permanent staff 602, temporary staff 102 person month	704
10	INFN	TOTAL	Permanent staff 494, temporary staff 291 person month	785
		WP11/BD	R&D of a novel non-intercepting diagnostic for emittance	163
		TOTAL	Permanent staff 115, temporary staff 48 person month	163
		WP2/ISCF	EB welding	20
		WP3/SCF	SCP by spinning	80
	INFN-LNL	WP5/SP	Alternative EP	90
		WP6/MA	Flux gate magnetometry	40
		TOTAL	Permanent staff 158, temporary staff 72 person month	230
		WP2/ISCF	Reliability analysis	50
		WP2/ISCF	Improved component design	48
	INFN-Mi	WP8/TUN	R&D on pieco electric actautors	48
		TOTAL	Permanent staff 75, temporary staff 71 person month	146
		WP4/TFCP	Development of planar arc cathode	156
	INFN-Ro2	WP11/BD	R&D on a novel non-intercepting diagnostic for emittance	90
		TOTAL	Permanent staff 146 temporary staff 100 person month	246
		WP8/TUN	R&D on magneto-strictive tuner	15
	[WP9/LLRF	Data management for DOOCS operating system.	24
12	TUL	WP9/LLRF	Radiation damage studies on electronics	16
		WP9/LLRF	Development of Finite State Machine	41
		TOTAL	Permanent staff 48, temporary staff 48 person month	96
		WP2/ISCF	EB welding	30
13	IPJ	WP4/TFCP	R&D on linear arc cathode	200
15	11.3	TOTAL	Permanent staff 210, temporary staff 20 person month	230
		WP9/LLRF	Highly stable frequency distribution network	48
		WP9/LLRF	RF control using FPGA's.	48
14	WUT-ISE	WP9/LLRF	Performance optimisation for different gradients	36
14	WU1-13E	WP9/LLRF	Multichannel downconverter.	36
	•			
		TOTAL WP9/LLRF	Permanent staff 120, temporary staff 48person month Design of exception handling routines	168 36
			is origin of encoption nulluling fourness	1 50
19	PSI	WP9/LLRF	RF gun control system	36

 Table 8.R1.2b : Involvement of each participant in person-months

8.R1.3 Outline implementation plan for the full duration of the activity (including milestones and deliverables)

SRF is articulated around 11 work packages:

- one work package dedicated to management and communication (M&C)
- the ten others targeting the main objectives as described below

All tasks aim at an improvement of the quality of the accelerator test facility TTF. Deliverables will be in form of scientific reports, proposals for design or treatment changes, approved new fabrication methods and construction of prototypes.

Work package 1: Management and Communication (M&C) oversees and coordinates the work of all work packages, organizes Steering Committee meetings, ensures proper reviewing and reporting as well as dissemination of knowledge within the JRA SRF and the CARE project.

Work package 2: Improved Standard Cavity Fabrication (ISCF) aims at improving the present cavity fabrication technology. It is based on the operating experience with superconducting cavities in the test linac TTF. There is an obvious need to modify at least partially the cavity design and the preparation procedures to improve the performance and reliability of the SRF accelerating system.

Work package 3: Seamless Cavity Production (SCP) follows the idea to fabricate the actual cavity (excluding the end groups with auxiliary components like input coupler ports, higher order mode dampers...) by a method that avoids welding. This would eliminate possible performance degradation by a low quality weld. There are two methods of seamless production: spinning and hydro-forming. Very encouraging results are obtained with single cell cavities. This technology will be extended to multi-cell cavities.

Work package 4: Thin Film Cavity Production (TFCP) works on a new method of thin film coating by vacuum arc technology. Instead of fabrication of a cavity from bulk Niobium, a Copper cavity will be coated at the inside by a thin (several µm thick) superconducting Niobium layer. As compared to the sputter coating method (as being developed by CERN) the novel method of vacuum arc coating promises superior superconducting film properties. First results on samples support this expectation. Two different methods using a planar or a linear source will be investigated.

Work package 5: Surface Preparation (SP) investigates new methods of surface cleaning. There are two different topics: electro-polishing and dry ice cleaning. Electro-polishing will produce smoother surfaces as compared to the widely used chemical polishing method. There are very encouraging results on single-cell and nine-cell cavities (in collaboration with KEK, Japan), which can be excited to considerable higher RF fields. In this work package, the optimum EP parameters will be investigated first with single cells. As a next step, this technology will be adapted to the geometry of multi-cell cavities. In parallel, a new method of EP with self-stabilising parameters will be further developed for single cell and multicell cavities. Dry ice (CO₂) cleaning is expected to clean surfaces from dust or residual contaminations much more effectively than the presently used technique of high pressure water. It is under use in the semiconductor industry but was never applied to SRF cavities.

Work package 6: Material Analysis (MA) extends the methods of quality control of Niobium material and cavity surfaces. At present, an eddy current scanning technique is implemented in the acceptance procedure of Niobium sheet from industry. It is a quantitative measure of the purity that can be used to detect inclusions beneath the surface of the sheet material. This scanning technique can be improved further in sensitivity by implementation of a

superconducting Squid sensor. A second way is to develop a simpler flux gate magnetometer for use at the industrial plant.

DC field emission scanning is a very sensitive method for detection of small surface contaminations. This technology will be further developed for a systematic evaluation of the surfaces of samples, which travel together with the cavity during the different steps of preparation. It is envisaged to install a nearly in-situ quality control of the preparation steps by this method.

Work package 7: Couplers

The aims of this WP include new input coupler designs as well as construction of prototypes. Results from the tests of prototypes will also be delivered, the tests being carried out on a dedicated high power tests stand recently built at Orsay. Among the delivered hardware will be a titanium-nitride coating bench designed to allow coating of several coupler ceramic windows simultaneously. RF "conditioning" studies will also be provided. The TTF couplers were specified for 210 kW peak power in normal operation with higher powers (~ 1 MW) at short pulse lengths for cavity conditioning. We aim to develop couplers that will comfortably handle 1 MW peak powers for pulse lengths of 1.3 milliseconds at 5 Hz repetition rate. Such couplers are necessary to match the progress aimed for in the cavity fields. In addition it is hoped that the conditioning studies will lead to a procedure allowing faster conditioning times than at present (typically of the order of one week).

Work package 8: Tuners

The development of active tuner systems is imperative for operation of SC cavities at high gradient. Four of the participating laboratories are investigating innovative tuner systems as well as developing the electronic drive circuitry necessary for them. These tuners are the deliverables of this WP. Especially innovative will be the development of tuners based on piezo-electric and magneto-strictive effects. Tuners are required to counteract the so-called Lorentz de-tuning effect when the cavities are pulsed at high field so as to maintain the phase and amplitude constant during the RF pulse, whilst minimising additional RF power needed for field control. We aim to develop tuners capable of correcting 1 kHz of de-tune so allowing the cavities to operate stably at 35 MV/m. This should be compared with existing tuners on TTF which correct for fields of ~ 15 - 20 MV/m. Long life-time is also a major issue and we aim to develop tuners allowing for 20 years of operation.

Work package 9: Low level RF

This WP is comprised of a large number of sub-tasks all of which are aimed at improving the performance, reliability and ease of operability of the LLRF system, both hardware electronics and software, while at the same time allowing significant cost reductions. These sub-tasks will result in the following deliverables:

- design and construction of a detector of single bunch transients,
- automation of the LLRF,
- development of an optimal controller,
- development of exception handling routines,
- high performance optimisation routines for operation at different cavity fields,
- cost optimisation and reliability studies,
- studies of radiation damage to electronic hardware,
- development of a low cost, compact, high performance multi-channel down-converter,
- development of digital RF feedback control system,
- development of a highly stable frequency distribution system,
- · development of a data management system,
- RF gun control.

It is important to note that all of these tasks are independent of the others and that each contributes individually to the improvement of the RF system.

Work package 10: Horizontal Cryostat Integration Tests

The deliverables of this WP concern the results of tests performed on SC cavities in CRYHOLAB (shown as test 1, test 2 etc..., in Gantt chart), a test infra-structure built by an IN2P3-CEA collaboration at Saclay. This facility will allow integrated tests of cavities equipped with improved components resulting from developments in other WP's within the JRA (tuners and couplers). Novel thermometric calibration techniques will be developed for use during these tests.

Work package 11: Beam Diagnostics

Two different diagnostics will be designed and constructed within this work package. The first will be an RF cavity based beam position monitor (BPM). This device will have a resolution five times better than existing devices while maintaining high temporal resolution. The second will be a non intercepting emittance monitor based on millimetre wave radiation emitted by diffraction effects as the beam traverses a slotted aperture. These diagnostics, both of which will be tested on TTF, constitute the deliverables of this WP.

The **main deliverables** of the research activities of SRF will be the construction of prototypes of superconducting cavities for the TTF Test Facility with

- high accelerating gradients (> 35 MV/m) and
- lower RF losses (higher quality factor) and
- improved reliability,
- as well as prototypes of,
- input power couplers,
- active tuning systems,
- beam diagnostics,
- results of tests of the above components integrated together in a horizontal cryostat.

The following Gantt chart presents the implementation plan for the whole duration of the SRF-JRA for each of the workpackages. Milestones and deliverables are included.

			2004		2005			200				007			800
Task Name	Milestones, Deliverables	T4	T1 T2 T3 T4	4 1	[1 T	2 T	3 T4	T1	T2	T3 T4	I T	1 T2	2 T3	T4 T1	I T2
WP 2 IM PROVED STANDARD CAVITY FABRICATION															
Reliability Analysis															
Review of data bank: cavity fabrication															
Review of data bank :cavity treatment			<u>Ъ</u>												
Review of data bank: cavity VT performance			Ľ.												
Review of data bank: string assembly			<u> </u>												
Review of data bank: string performance			L L												
Establish correlations			<u>ь</u>												
MS Final report on reliability issue	Final Report		↓ 2	24/	09										
Improved component design															
Documentation retrieving			÷												
Access and study of Jlab, DESY, LLAN, KEK experience															
MS Summary report on the status of the art on ancillaries	Intermediate Report		02/0)7											
Sealing material and shape design															
Flange preliminary design				Bh											
Material and geometric compatibility				ľ											
Final assembly design															
End plate preliminary design				-											
MS Report about new design for components	Final Report			Ť	23/1	2									
Stiffness optimization			↓ ↓			-									
Manufacturing procedure analysis															
Final assembly design						հ									
Other ancillaries design						φ.									
MS Final Report for new components	Final Report					¥	05/07	7							

			20	04		2	005			200)6			2007			2008
Task Name	Milestones, Deliverables	T4	T1	T2	T3 T4	1 T	1 T2	2 T3	3 T4	T1	T2	T3	T4	T1 1	[2 T	3 T4	T1 T
Review of criticality in welding procedures			-														
Review of available parameters on vendor welding machine						Η											
Definition of prototype requirements for tests						F.											
Welding test on specimens							<u> </u>										
Analysis of the results							Ľ		Ъ								
MS Report about welding parameters	Intermediate Report							_	ک	21/1	0						
Finalize new component design								H	-			_	,				
Make drawings													հ				
MSNew components design finished	De sign Report											_	1	0/10			
Finalize new cavity design								ų				-					
Make drawings												հ					
MSNew cavity design finished	Design Report												25/	80			
New design of complete cavity												- 41	H		• 1		
Make drawings																	
MS New complete cavity design finished	De sign Report													կ	⊷ 0	5/06	
Fabricate cavity of new design		1													+		I
Fabricate		1															
MS Cavity of new design finished	New cavity	11														-	23/11

			2004				005			2006	1 -	007			200	
TaskName	Milestones, Deliverables	T4 ⁻	T1 T	2	`3 T∠	4 7	1 T2	2 T3 T	4	T1 T2 T3 T4	, T'	1 T	2 T3	T4	T1	Т
EB welding		_ ♥									-					
De sign too ling						۷.										
Tools for flange w elding			Ъ													
Tools for pipe welding			ŬЪ_	_												
Tools for stiffening rings			Ì	Ъ												
Tools for single cell w elding				Ť	հ											
Tools for 9-cells					Ĭ	Ъ										
MS Tools design finished	Design Report					٩Ť	15/12	2								
Tools production			-	-		-	•									
Tools for flange w elding			Ľ													
Tools for pipe welding			Ľ	i 📘												
Tools for stiffening rings				Ľ	\bot											
Tools for single cell welding						Τ										
Tools for 9-cells						Ľ	Ъ									
MS Tools fabrication finished	Prototypes fabricated					Г	▲ 1	1/03								
Welding		- ↓									—	_		_		
Commissioning welding machine			<u>_</u> _	_												
Test w elding							1									
MS start production welding	Start of welding components					ų		1/03								
Single cell w elding																
Multicell w elding																

TaakNama	Milestenes Delivershire		20		To	T 4)05 4 To	To		2006			2007			2008
Task Name WP3 SEAMLESS CAVITY PRODUCTION	Milestones, Deliverables		11	12	13	14		1 12	13	14	11	12 1	3 14		Г2 Т3	14	11 1
Seamless by spinning		- -	T														•
De sign s pinning apparatus		- `															
Drawings of the matrices																	
Drawings of the support system	De sinn Den set		-			1	7/0	9									
MS Drawings of spinning machine finished	De sign Report					1	1	0									
Fabrication of spinning machine										-							
Hydraulic for machine									_								
Software for the machine																	
Machine fabrication									h								
Commissioning of the machine																	
MS Spinning apparatus ready	Spinning machine									*	10/1 ⁻	1					
Evaluation of spinning parameters		-			I	_						•					
Drawings of the support system and turning mechanism											- -						
Drawings of the necking mechanism											-						
Fabrication of the tube necking machine											Ъ						
Commissioning of the machine												h					
MS Spinning parameters defined	Intermediate Report											💑 18	B/05				
Spinning of 1-celll cavities											4		_				
Material and fabrication of bulk Nb test tubes													ի				
Material and fabrication of bimetallic NbCu test tubes																	
MS 1-cell spinning parameters defined	Intermediate Report													07/1	2		
Extension of spinning apparatus to multicells													₽₩				
Computer simulation of the necking														ĥ			
MS Start of Multi-cell spinning	Start spinning													👗 11.	/01		
Spinning of multi-cell cavities cavities													•				
Computer simulation of the hydro forming																	
Hydro forming of bulk Nb 9-cell cavities		1															
MS Parameters of multi-cell spinning defined	Design Report	1													1	2/07	
Series production of multi-cell cavities		1															1
Spinning		1															1
MS Multi-cell cavities finis hed	Final report, prototype cavities	1														Ì	30/1

			200				200				2006			2007			200	
sk Name	Milestones, Deliverables	<u> T4</u>	T1	T2	Т3	T4	T1	T2	T3 T	4	Г1 Т2	2 T3 1	T4	T1 T	2 T	3 T4	T1	
Seamless by hydro forming		- ¶																
Design hydro forming machine		- ¶			_													
Drawings of the matrices																		
Drawings of the support system																		
MS Drawings matrix & support finished	Design Report				•	17/	/09											
Construction of hydro forming machine		. 4																
Hydraulic for machine					\vdash	_												
Software for the machine						,	_											
Machine fabrication					Ì			1										
Commissioning of the machine									L									
MS hydro forming machine ready	Hydro-forming machine							•	01/0	07								
Construction of tube necking machine			_			-				Y								
Draw ings of the support system and turning mechanism																		
Drawings of the necking mechanism																		
Fabrication of the tube necking machine					ľ				l									
Commissioning of the machine										h								
MS Necking machine ready							-		. .									
Software for the tube necking machine						-	٦											
MS Construction tube necking machine finished	Necking machine						٠	24/0)2									
Development of seam less tubes for 9-cell cavities		1	_					_	,									
Material and fabrication of bulk Nb test tubes								-		-								
Material and fabrication of bimetallic NbCu test tubes										-								
MS seamless tubes ready									30/0	D6								
Development of tube necking													-					
Computer simulation of the necking										1								
Experiments on tube necking at iris										ľ			_ j					
MS Tube necking machine operational	Necking Machine ready												Ì	15/1:	2			
Hydro forming of seamless cavities		🖷	_												Y			
Computer simulation of the hydro forming																		
Hydro forming of bulk Nb 9-cell cavities		11										·	h					
MS Hydro formed 9-cell cavities ready		1											2	6/10				

			2004				005			2006	1 ! -	200			200
TaskName	Milestones, Deliverables	T4	T1	T2	T3 T4	4 T	1 T2	T3 T	4	T1 T2	2 T3 T4	1 T1	T2 T	3 T4	T1
WP4 THIN FILM CAVITY PRODUCTION		_													
Linear-arc cathode coating		_ _													1
Installation & commissioning of coating apparatus		_ ¶				Y									
Modification of a prototype facility for single cells															
Optimization of a triggering system					h										
MS Prototype ready	Prototype facility ready				30/	/07									
Study of arc current reduction and stabilization		-				-									
MS Coating apparatus operational						*	31/12	2							
Coating of single cells without micro droplet filtering						۲					•				
Coating		1													
MS Droplet filter ready	Hardware	1						• 08/	07						
Coating of single cell with micro droplet filtering							I	-		_					
Coating															
Design and commissioning multi-cell coating										,				_	h i
Design & commissioning															5
MS First Multicell coating	Multi-cell cavity													_ L	21
Planar-arc cathode coating		1 🖷	-											_	
Modification of a planar-arc & trigger system		1 🖷	_												
Modification															
Optimization of the laser triggering system															
MS Planar arc system fully tested							- 🐳	27/05	5						
Routine Operation of planar arcsystem							৾৾৾৸ৠ								
Characterization of samples coated at different conditions												Ì			
Quantitative investigation of the micro droplet problem								*							
MS Summary report on quality of planar arc coating	Intermediate Report												↓ 2	5/05	
MS First multicell coating	Cavity												♦ 2	5/05	
Studies of other HTC superconducting coating		1							÷					_	H
Study															П
MS Report on quality of superconducting properties	Intermediate Report														28
Report on Thin Film Coating	Final Report													Ļ	28

			20				200				2006		200			20	
Task Name	Milestones, Deliverables	T4	T1	T2	Т3	Τ4	T1	T2	T3 T	4 -	T1 T2 T3	3 T4	T1	T2	T3 T	4 T1	Т
WP5 SURFACE PREPARATION																	
EP on single cells			÷			-										Ý.	
EP on samples			-				h										
Establishing method of surface characterization			•														
MS: Surface characterization fixed	Intermediate Report			- 🐳	28/	05											
Series of EP with samples for surface investigations]										
MS: best EP parameters	Intermediate Report						3	1/12									
Single cell cavities			÷			-											
Order Nb and fabricate 3 cavities							1										
MS: 3 cavities fabricated	Cavitie s					-	3	/12									
Build EP chemistry for single cells						-	h										
Design of EP set-up																	
Fabrication of EP set-up																	
Commissioning of EP set up							1										
MS First operation of EP set-up	Operation of EP setup						3	/12									
Operation of single cell EP							٦	-	 1								
Continuous single cell operation																	
MS define working parameters for single cells	Intermediate Report								b	03/	/10						
Continuous operation, search for best parameters									₩₩							1	
Parameterising EP procedure																h	
Milestone: EP parameters fixed	Intermediate Report															🐳 2	28/1

				004					005				2006				007			200	
Fask Name	Milestones, Deliverables	T4	T	1 T	2	ТЗ	Т4	T	1 T	2	Г3 -	Т4	T1	T2	T3 T	4 T	1 T2	T3	Τ4	T1	
₽ for multi-cells																					
Transfer parameters from 1 cell to multi cell equipment			٢							•	,										
Finish EP setup nine-cells at DESY		•	÷			-															
Improved gas cleaning system					h																
Design for hot water rinsing				i		Ъ															
MS Proof-of-Principle experiment Hot water rinse	Intermediate Report				Г		<mark>ן 09</mark>	9/0	9												
Optimize electrode shape					4	•				-	1										
Develop computer model/ Evaluate softw are								þ													
Design improved electrode								1	-		L										
MS Electrode design fixed	De sign Report										. 14	/07									
Fix process parameters/ Quality control		•	٣					٧.													
Setup chemical lab				ղ																	
Bath aging				ľ																	
Bath mixture						ի															
Alternative (salt) mixtures						Ľ		¢,													
MS Process parameters fixed								¥	12/	01											
Laser roughness		1				Ý					-										
Evaluate existing systems								Ь													
Specify laser system		1						Ì		հ											
Built laser system		1																			
MS Roughness measurement finished	Measurement equipment	1									- 🐳	30	/09								

			20	04			20	05			200	6		20	07		2	2008	3
ask Name	Milestones, Deliverables	Τ4	T1	T2	T:	3 T4	T	1 T2	: T:	3 T4	T1	T2	T3 T-	4 T'	1 T2	T3 T	4	Г1 7	T
Oxipolishing as final chemical cleaning							-												
Laboratory studies								l											
Design of OP system								h	_										
Setup one-cell system											H								
MS Proof-of-Principle experiment Oxipolishing	Intermediate Report										15/	12							
Design OP for nine-cells																			
Build OP for 9-cells																			
MS OP for 9-cells ready	OP e quipm ent							- 🐳	12	/05									
Transfer Electropolishing technology to industry							÷-												
Qualify industry with one-cells																			
Industrial design study on setup for multi-cells											<u> </u>								
MS Report on industrial design	Intermediate Report											24	/03						
Fabricate EP multi-cell industrial prototype													h						
Commission EP multi-cell in dustrial prototype														h					
MSEP multi-cell industrial prototype ready	EP Prototype ready												-	24	4/11				
Operate EP multi-cell indus trial prototype																	h		
MS Final report on industrial EP	Final Report																4	20/	•

	Milestere Deline		004		2005		2006		2007		2008
askName	Milestones, Deliverables	T4 T	1 T2 T3	T4 1	[1 T2	T3 T4	T1 T2	2 T3 T4	T1 T	2 T3 T4	T1 1
Automated EP (AEP)										-	
Prototype EP installation											
Design installation			h i								
Fabricate/ order components											
Assemble EP installation											
MS First operation of automated EP	First operation		•	14/0)9						
🗗 computer control											
Design control architecture			Ľ.								
Developed softw are			Щ.								
Test of softw are											
MS Software ready	Intermediate Report			28/	09						
Operation of AEP prototype				41							
Correlate surface finish/ conductance					L						
Determine optimum conductance				Ì	h						
Optimize automated operation						Ъ					
Design report on AEP						Δų –					
MS Automated EP is defined	Intermediate Report					2	3/09				
Alternative electrolytes							-				
Review of EPchemistry			Č.								
MS Proposal for alternative electrolytes	Intermediate Report		→2	23/07							
Experiments with alternative electrolytes							-	հ			
MS Conclude experimental results	Intermediate Report							09/06			
Define best AEP										_	
Compare standard/new electrolyte method											
Modify A EP installation for best electrolyte								—			
Operate modified A EP									1	Ъ	
Design report on best AEP										Ъ	
MS Conclude on best electrolyte	Final Report									17/	08

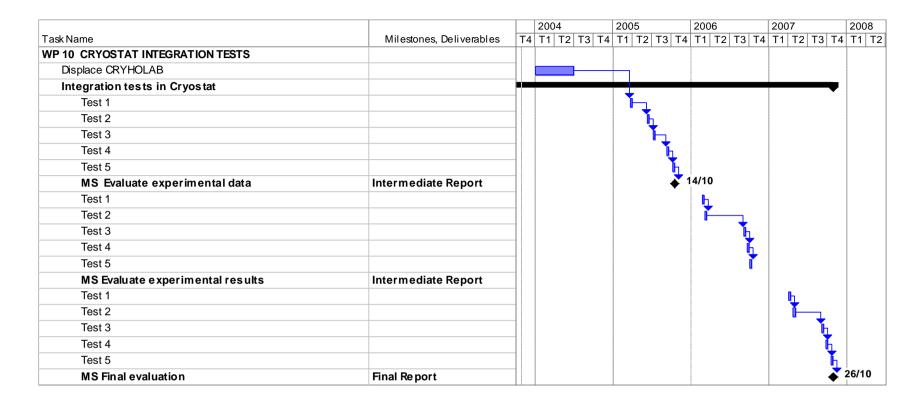
Task Name	Milestones. Deliverables)04 1 T2			005		2006		200			2008
	winestories, Denverables			1 12	13 14	+	1 12	13 14		Γ2 T3 T4	+ 11	12 13	14	
Dry ice cleaning Installation of full system for 1-3 cell cavities		-11 ;	T										T	·
Installation of CO2 piping		- `												
Installation of motion system				-	L									
Installation of control system														
Commissioning														
MS Installation finished	Start operation					0	1/12							
Optimization of cleaning parameters	Start Operation				, ,		.,							
Sample cleaning														
1-cell cavity cleaning														
fix best cleaning parameters	Interne dista Donort							30/0	6					
MS Cleaning parameters fixed	Intermediate Report	_				¥	•	. 30/0	_					
VT 9-cell cleaning apparatus		_												
Design 9-cell apparatus VT							- <u>\</u>	_						
Fabricated 9-cell apparatus														
Installation of 9-cell apparatus														
Commissioning of 9-cell apparatus														
MS Installation finished	9-cell VT cleaning apparatus							-	30/1	1				
VT Cleaning of 9-cell cavities								₽	-					ļ
Cleaning								1						
Design & construction of H9-cell cleaning apparatus								₽	-		+ •	,		
Design 9-cell apparatus VT								(<u> </u>	_				
Fabricated 9-cell apparatus														
Installation of 9-cell apparatus										—				
Commissioning of 9-cell apparatus												1		
MS Start 9-cell cleaning	H 9-cell apparatus										1	04/04	i i	
Cleaning of horizontal nine-cell cavity														J .
Continuous cleaning											[1
MS Evaluate experimental results	Final Report												- 🏅	31/1

			2004			2005			2006		2007			2008
Fask Name	Milestones, Deliverables	T4	T1 T	2 T3	6 T4	T1	T2 T	3 T4	T1 T	2 T3 T4	T1 '	Г2 Т3	T4	T1 T
WP6 MATERIAL ANALYSIS														
Squid scanning													- Ý	J
Produce calibration defects			-											
Production of surface defects														
Production of bulk defects														
MS Calibration defects finished	Report, Calibration defects ready			÷	12/0	8								
Design components of Squid scanner		(
Design of the scanning table and support					_									
Design of the SQUID cooling system					<u> </u>									
MS Design Scanner finished	De sign Report					30/1	1							
Construction of scanning apparatus					- ¥			_						
Fabrication of the SQUID							_							
Fabrication and purchase of components for SQUID apparatus														
Software for the SQUID scanner							_							
Commissioning and calibration of scanning apparatus														
MS Scanning apparatus operational	Scanning apparatus ready							-	16/1:	2				
Scanning of sheets with artificial defects														
Scanning of sheets with artificial surface defects										<u>h</u>				
Scanning of sheets with artificial bulk defects										É				
Development of algorithm for material defects classification														
MS Classification of defects finished	Intermediate Report										⊷ 0	8/02		
Scanning of production sheets														I
Scanning of sheets of different producers													h	
Identification of defects by (EDX, SURFA etc.)														
Conclusive comparison with eddy current data														ı
MS Final report on Squid scanning	Final Report												- 🏅	31/1

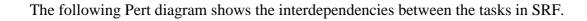
Fask Name	Milestones, Deliverables	T4	2004		3 T4	200 T1			2006	2 T3 T4	200 1 T1		3 T/	2008
Flux gate magnetometry	winestones, Denvelables				3 14		12	13 14		2 13 12	+ 11		3 14	
Produce calibration defects		-11,	T										•	
Production of surface defects		- `		_										
Production of bulk defects		-												
MS Calibration defects finished	Report, Calibration defects			¥	01/07									
Design components of flux gate head		- e												
Design electronics			 -	1										
Design of flux gate head					հ									
Design of operations software														
MS Design flux gate head finished	Design Report				03	/09								
Fabrication of flux gate detector			•				-							
Fabrication of flux gate head						h								
Fabrication of mechanics														
Implementation of softw are						ľ.	L							
Commissioning of flux gate detector							É1							
Calibration of flux gate detector							Ľ,							
MS Flux gate detector operational	Start operation						•	10/06						
Commissioning of flux gate detector		-						_		-				
Operational tets tests									<u>h</u>					
Evaluation of test results														
MS Flux gate scanner commissioned	Intermediate Report									30/0	6			
Operation of flux gate detector										-		•		
Regular operation											Ы			
Report of operation											Ľ,	1		
MS Conclusion of flux gate scanning operation	Intermediate Report										•	14/0	3	
Comparison with SQUID scanner												4		l
Compare measurements												*	b	
Conclude SQUID scanner vs. flux gate detector	Final Report												-	07/1

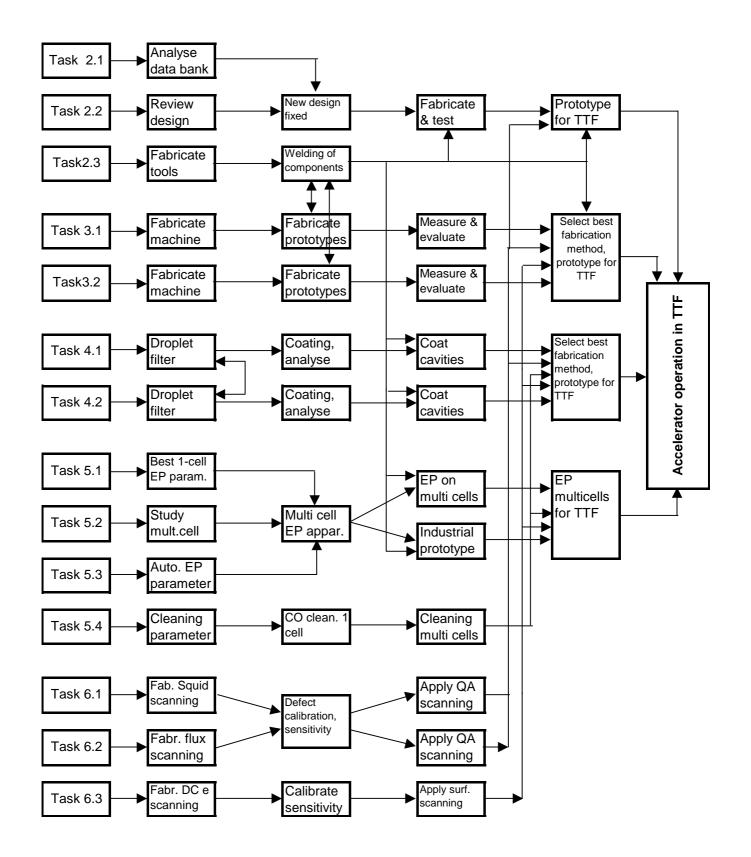
ask Name	Milastanan Daliyamhlan	2004	2 74	2005		-	06		2007			2008
	Milestones, Deliverables	T4 T1 T2 T	3 14	11 1.	2 13 1	4 11	1 12	13 14		2 13	14	
DC field emission studies of Nb samples		- Y									Ì	•
Quality control scans											T	,
Modification of Scanning apparatus												
Calibration of Scanning apparatus												
MS Start scanning activity	Start operation	, I I I I I I I I I I I I I I I I I I I	4/06									
BCP and HPR samples												
EP and HPR samples												
BCP/EP and DIC samples					հ							
MS First report on BCP/EP and DIC surface	Intermediate Report				10/0 <mark>م</mark>	6						
Continue QA scanning												1
MS Evaluation of scanning results	Intermediate Report											31/
Detailed measurements on strong emitters				I							-÷	ļ
Calibrate apparatus for high current						ղ						
MS Start strong emitter evaluation	Start strong emitter measurements					30	0/11					
VV curves and current limits											_	1
SEM and A ES						Ť			-		_	
Influence of heat treatment and ion impact						—					_	L
MS Evaluate strong emitter investigations	Final Report										- V	í –

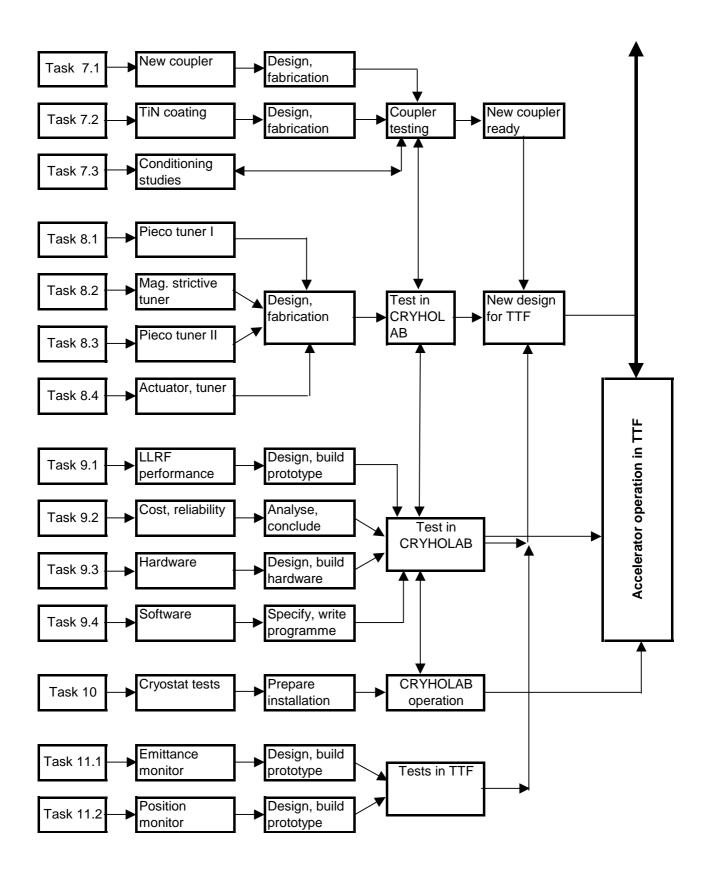
		2004	2005	2006	2007		008
TaskName	Milestones, Deliverables	T4 T1 T2 T3 T	4 T1 T2 T3	T4 T1 T2 T3 T4	4 T1 T2 T3	T4 T1	1 T
WP7 COUPLERS							
New Prototype Coupler		+					
RF Simulations of Coupler							
Detailed Engineering Draw ings							
Call for tenders							
Prototype Fabrication in Industry							
Low Pow er tests				D			
MS Ready for High Power Tests	Coupler			👗 15/0)7		
Fabrication of TiN Coating System							
Mechanical design of vacuum chamber							
Fabrication draw ings							
Construction of vacuum chamber			l t				
Define vacuum needs							
Appropriation of vacuum equipment							
Design of electronic circuitry							
Fabrication of electronics in industry							
Installation and Test at Orsay					h		
MS First Window Coating	TiN coating system				01/12		
Conditioning Studies of Proto-type Couplers				+		-	
Conditioning of couplers							
Evaluate conditioning results							
MS Final report on conditioning	Final Report					30 🏹	0/11


			200				20				2006			2007			200	
TaskName	Milestones, Deliverables	T4	T1	T2	T3	T4	T1	T2	T3	T4	T1 T	2 T3	T4	T1 1	[2 T	3 T4	T1	Т
WP8 TUNERS																		
UMITUNER		_ '			_												•	
Control electronics					₽													
Tuner design							1	<u>ь</u>										
MS Tuner design finished	Design Report							.€Ţ	15/04									
Tuner fabrication										1								
Fast piezo tuner design									⊢_									
Piezo fabrication and bench tests									1									
Cavity-tuner-coupler integration															Ŀ			
Pulsed RF tests															Ľ			
Magneto-strictive Tuner		_ I	ب				۲.											
Complete specification			Ŀ.															
Conceptual de sign			Ľ	h														
Prototype and performance evaluation					h													
Finalize tuner and drive electronics design					Ľ.													
Test of tuner							h											
MS Report on magneto-strictive Tuner	Status Report					•	• 3	31/12	2									
CEA Tuner		1	┝					V										
Design Piezo + Tuning System					h													
Fabrication							h.											
Installation RF								Ъ										
MS Declare "Ready for experiment"	Ready for experiment							\$ 2	5/03									
IN2P3 Activity			┝							-	,							
Characterize actuators/piezo-sensors at low temperature					ղ													
Test radiation hardness of piezo tuners					*		Ł											
Integration of piezo and cold tuner							Ľ	<u>_</u>										
Cryostat tests									հ									
Tests with pulsed RF											1							
MS Report on IN2P3 tuner activities	Status Report	11								-	30/1	2						

T			20			_		005	-	-	20				007			2008
Fask Name	Milestones, Deliverables	T4	T1	T2	T3	T4	T'	1 T2	T3	3 T4	T1	T2	T3 T	4 T	1 T2	2 T3	T4	T1 T
NP9 LOW LEVEL RF		_							_									
Operability and technical performance		_	ſ						•									
Transient detector		_ '					T											
Define requirements		_	Ъ,															
Electronics design																		
Build prototype and evaluate					Ŀ,													
Final design of detector					Ĺ	h.												
Installation and commissioning						Ľ.												
Test with beam						Ľ	<u>þ</u>											
MS Report on transient detector test	Status Report						¥	28/0)1									
LLRF Automation			-					_	V									
Dialogue with industrial experts				L														
Develop full specification			Ì	ĥ														
Implement FMS for subsystems																		
Test and evaluation							þ.											
Implement improvements							Ì	η										
Evaluation and acceptance by operators									հ									
MS Report on LLRF atomization design	Status Report								<mark>و ا</mark>	01/07	7							
Control optimization			-				-		7									
Specification of system				h														
Conceptual design of controller				Ľ.														
Performance simulation																		
Implementation in DSP hardw are							h											
Implementation and tests on TTF							Ľ		հ									
MS Evaluation of test results	Status Report							•	2	4/06								
Exceptional handling routines			-			-												
Specification			Ъ															
Design of exceptional handler				Ъ														
Implementation and test on TTF																		
MS Report on exceptional handler operation	Status Report					- 🐳	26	6/11										


			20	004			2	005			2	2006			2007			2008	3
TaskName	Milestones, Deliverables	T4	Т	1 T2	2 T	3 T4	1 7	⁻ 1 T	2	ГЗ Т	4	T1 T2	2 T3	3 T4	T1 T	2 1	Г3 T4	T1	Τ2
LLRF cost and reliability study									-										
Cost and reliability study		•	┢╴						V										
Identify cost drivers of present LLRF				հ															
Develop cost reduction ideas				Ľ.															
Build prototypes and evaluate							h												
Final design of LLRF system							Ľ												
MS Complete design of LLRF system for	Status Report								¥	24/0)6								
reduced cost																			
Radiation damage study			-						-										
Identify critical electronics issues				Ŀ															
Evaluate radiation				Ľ.															
Develop tests for components				Ľ.	L.														
Procure and assembles test set up				i	Ľh														
Data acquisition from radiation tests					Ľ	_ 1													
Analyze results and develop countermeasures						Ľ	h												
Implement countermeasures and verify							Ľ		Դ										
MS Report on radiation damage studies	Status Report								¥	24/0)6								


				004				200					006				2007				2008
TaskName	Milestones, Deliverables	T4	ΙT	1 T	2 T	3 T	4 -	Τ1	Τ2	T:	3 T-	4 T	1	T2 ⁻	T3 T	Г4	T1	T2	T3	Г4 Г	T1 T
Hardware																					
Multichan nel dow nconvertor			Ý				Ý														
Study and compare technologies				h																	
Select optimum PCB design				Ď	_																
Build prototype and evaluate				Ľ	h																
Finalize multichannel dow nconverter						հ															
Determine characteristics							-		_												
Third generation RF control			÷					-													
Integrate system generator with V HDL				1																	
Complete specification				5																	
Demonstrate simulator					հ																
Final design of RF electronic board							h														
Evaluate performance							Ľ														
Stable frequency distribution			÷						_	,											
Complete specification			D	L																	
Concept ional design of frequency			Ì	h																	
Build prototype and evaluate						1															
Final design						5															
Procurement and assembly of subsystems							h														
Installation and commissioning							Ľ	Ъ													
Performance test with beam								Ľ		h											
MS Report on new LLRF hardware components	Status Report) 2	4/0	6									


																			2008	
Milestones, Deliverables	T4	T1	T2	2 T 3	3 T4	4 T	1	Г2	Т3	Τ4	T1	1 T2	2 T	3 T4	T1	T2	T3	Τ4	T1	Т
								•												
		┝─																		
			⊐₁																	
				Ъ																
					հ															
					Ľ.															
						h														
						Ľ	,	h												
Status Report							-	2	29/0	4										
		┝																		
		Ъ																		
					L															
						1		h												
Status report								2	29/0	4										
	Status Report	Status Report	Milestones, Deliverables T4 T1	Status Report	Milestones, Deliverables T4 T1 T2 T3 Milestones, Deliverables T4 T1 T2 T3 Status Report Image: Status Report	Milestones, Deliverables T4 T1 T2 T3 T4 Status Report Image: Constraint of the second	Milestones, Deliverables T4 T1 T2 T3 T4 T Status Report Image: Control of the second	Milestones, Deliverables T4 T1 T2 T3 T4 T1 Status Report Image: Control of the second secon	Milestones, Deliverables T4 T1 T2 T3 T4 T1 T2 Status Report Image: Control of the second s	Milestones, Deliverables T4 T1 T2 T3 T4 T1 T2 T3 Status Report 29/0	Milestones, Deliverables T4 T1 T2 T3 T4 T1 T2 T3 T4 Status Report 29/04	Milestones, Deliverables T4 T1 T2 T3 T4 T Status Report \$\$	Milestones, Deliverables T4 T1 T2 T3 T4 T1 T2 T4 T1 T2 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3	Milestones, Deliverables T4 T1 T2 T3 T4 T1	Milestones, Deliverables T4 T1 T2 T3 T4	Milestones, Deliverables T4 T1 T2 T3 T4 T1	Milestones, Deliverables T4 T1 T2 T3 T4 T1	Milestones, Deliverables T4 T1 T2 T3 T4 T1	Milestones, Deliverables T4 T1 T2 T3 T4 T1	Milestones, Deliverables T4 T1 T2 T3 T4 T1

			20				2005			2006		007			800
Task Name	Milestones, Deliverables	T4	I T1	T2	T3 T	4	T1 T2	2 T3 T	T4	T1 T2 T3 T4	1 T	1 T2	T3	Г4 Т	1 T2
WP 11 BEAM DIAGNOSTICS															
Beam position monitor			*								7				
MS Present BPM installed in TTF module	Start of measurements			•	•_ ^{30/0}	06									
Cryogenic measurements on BPM					Ŀ_										
Beam tests of BPM on TTF															
Design of BPM Cavity					հ										
Fabrication of BPM Cavity															
Development of new hybrid coupler and electronics]							
Design of Digital Signal Processing															
MS New BPM ready for Installation	BPM ready								- 🍝	01/01					
Beam Tests with new BPM															
Beam Emittance Monitor		- r	┿─											-	
Slit width simulations				Ъ											
Slit design					հ										
Optics simulations					н										
Optics appropriations					Ľ	L									
System assembly and tests					Ì										
Mechanical as sembly at TTF							Ľ								
Optical assembly at TTF							Ľ.	ı							
Integration of controls into TTF								ել							
MS Ready for beam test in TTF	Start of beam test							⊷ _0	1/0	3					
Beam tests at TTF										L					
MS Evaluate first beamtest result	Intermediate Report								- 🍦	_02/01					
Successive measurements										•				_	
MS Final evaluation	Final Report													- 🐳	31/12

8. R1.4 Expected outcome

8. R1.4.1 Application to European research infrastructures

The technology of SRF accelerating systems was developed by several laboratories and institutes in the USA, Japan and Europe. Industrial competence in designing and building SRF components is established in Japan and Europe with a strong leadership of three European companies.

The challenging problems for increased exploitation of superconducting RF technology in accelerators are the achievable accelerating voltages of the cavities and the cryogenic losses. The accelerating gradient is ultimately determined by the properties of the superconducting material. Gradients are usually a factor of 2 to 5 below the intrinsic parameters of the commonly used Niobium. A better understanding of these limitations and their solutions therefore requires further R&D in this area.

The cryogenic loss is determined by the (dynamic) superconducting RF loss and the (static) cryostat loss. Large progress has been made with the development and construction of the TTF cryostats. There is hope to further reduce the superconducting losses by improving the cleaning methods for cavities (short term goal) or by thin-film technology (long term goal).

At present, four European accelerators use routinely superconducting RF technology: the heavy ion accelerator at INFN in Legnaro, the electron proton collider HERA, the electron linac at TTF (DESY) and DALINAC at Darmstadt. New projects in Europe using this technology are TESLA, the VUV-FEL (under construction at DESY), the ELBE accelerator at Forschungszentrum Rossendorf, the X-Ray FEL (proposal for a European FEL laboratory recently approved by the German government) and the planned proton linear accelerators needed for neutron spallation sources (ESS) or for transmutation machines.

Within the framework of an international collaboration, a unique SRF accelerator test facility (TTF) was established at DESY. Most partners of SRF are involved in this activity by developing, installing and commissioning components as well as by participating in the operation of TTF. This activity is documented in numerous TESLA reports, the latest being the Technical Design Report **TESLA** X-Ray FEL. for and the (http://tesla.desy.de/new_pages/TDR_CD/start.html, and http://tesla.desy.de/new pages/tdr update/start.html).

In addition to the central accelerator test facility TTF, there are SRF R&D activities at several European laboratories. These laboratories are participating to JRA1 (SRF) and to JRA PHIN (superconducting RF gun). There is vigorous communication, exchange of R&D results and coordination of research work amongst these partners within the TESLA collaboration. The bundled research activities of the participating institutions in the JRA will allow to develop and build new and innovative accelerator components and to test them in the TTF accelerator. This will not only be of importance for the performance of the TTF and the machines using superconducting RF technology, but it will also be an important and essential input for all future projects using this challenging technology.

In summary, the proposed research activities of SRF will strengthen the transfer and exchange of know how and expertise between the main European research centers interested in this field. In particular, the expected innovative results will improve the performance and accessibility of the above mentioned infrastructures. The joined experience – especially with TTF– will be essential for the design of future linear collider projects (TESLA), the European X-ray FEL, and planned transmutation machines and neutron spallation sources, projects which open new and exciting prospects to the European research community.

8. R1.4.2 Outline of the exploitation of results

The aim of SRF is to explore and apply novel fabrication technologies for superconducting accelerating structures. The expected progress due to the combined research activity will lead to prototype components, which – as a direct exploitation – can be installed into TTF and which will result in a superior operation of this device. Furthermore, concerning costs and performance, all future projects, which intend to use superconducting RF technology will benefit strongly from these developments. This is especially true for the proposed European X-Ray FEL, which will be the first large scale example, where this innovative technology can be applied.

In this respect, it is important that industrial partners be incorporated in the JRA on a partially self-financed basis. This will not only strengthen the competence and leadership of the involved European companies in this technology, but it will also allow them to be competitive and to occupy a large market share in the fabrication of superconducting accelerator components needed for the aforementioned future European and world-wide infrastructures.

The outcome of the project will not merely consist of the documentation of the results of our studies. Although prototypes of many devices will indeed be built, it is intended that certain tasks will conclude with the construction of **finalised versions** of components which can be fully exploited on the TTF linac. This is particularly true of intended developments on the LLRF system, cavity tuners and beam diagnostics. Thus, as examples, novel tuner designs, improved beam monitoring, and critical developments in RF controls will all be features of the improved infra-structure.

As a general rule, SRF participants will share freely all information related to their activity and will publish the results of their work in international journals and conferences.

8. R1.4.3 Monitoring success and impact of the activity

The success of the proposed research activities can be monitored by

- measuring the achieved accelerating gradients,
- measuring the RF losses and
- documenting the operating performance of the developed prototype cavities in TTF.

One can also monitor success of the research activity by comparing the results obtained in certain WP's with respect to the initial goals. For example the parameters and specifications aimed for in WP7 and WP8 will be tested in the Coupler Test Lab and CRYHOLAB respectively. The power handling capacity and conditioning period of couplers as well as the correctable 'de-tune' of cavities by the active tuners will be an obvious measure of success. Indeed CRYHOLAB will be the ideal instrument in which to quantify the level of progress made on many issues covered by this JRA. The practical applications of the developments made in WP9 to the TTF linac will provide direct evidence of the impact of the Low Level RF studies. The increased reliability of the machine which should result from these developments will have an impact on the programme of accelerator R&D foreseen on TTF as well as on the FEL user programme. Equally, the improvements in beam diagnostics emerging from WP11 will be evident from high resolution measurements of beam position and emittance. Evidently, the sum of the published literature resulting from the studies described in this JRA will be a measure of the progress achieved.

The impact of the results of JRA SRF will manifest itself in the use of the new fabrication methods such as vacuum arc coating, electropolishing for better surfaces and improved quality control

- by other laboratories for their research activities in superconducting RF technology thereby improving the performance and accessibility of their infrastructures,
- by industrial companies for the large scale production of superconducting cavities thereby rising their competitiveness and expertise in this modern technology.

8. R1.5 Subcontracts

Industrial subcontracts are foreseen for the work packages 2, 5 and 6 as detailed below.

Improved component design (ISCF task 2.2; task 2.3)

Topics for the industrial contracts are:

- the improvement of the design of cavities,
- the improvement of the design of auxiliary components, such as connections to vacuum tanks and to liquid He circuits, flange technology and so on,
- the identification of costly and critical fabrication steps,
- the development of methods suitable for industrial mass production.

There is a large experience with the production and operation of about 50 superconducting RF cavity units at the test facility TTF. Based on this expertise, the design, fabrication methods and quality assurance philosophy will be examined in order to reduce fabrication costs, increase reliability and introduce mass production technology.

Squid scanning apparatus (MA task 6.1)

In this task, a novel Squid scanner for quality control of the Niobium material will be developed. This will improve the present technology of eddy-current scanning of Niobium sheets with a normal conducting coil. The Squid sensor will:

• enhance the sensitivity for finding material defects,

- increase the penetration depth of the scanned bulk material,
- allow faster scanning by covering an enlarged sampling spot.

Electropolishing (EP) on multicell cavities (SP, task 5.2)

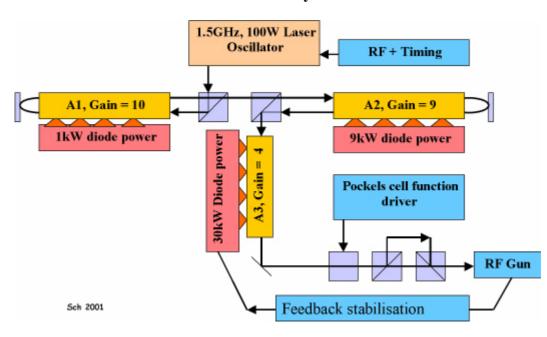
Electropolishing of the inner surface of a Niobium cavity will produce a much smoother surface than what can be obtained by the present method of chemical cleaning. As already demonstrated on single cells, this has also a high potential to improve the superconducting properties of multi-cell accelerating structures. After exploring the principle parameters on single cell experiments, this technology will be transferred to multi-cell preparation. The aim is to incorporate chemical industry at this stage in order to approach industrial standards as early as possible.

8. R2 Activity JRA2: Charge production with Photo-Injectors (*PHIN*)

8. R2.1 Description and objectives of the activity

The JRA on photoinjectors is mainly devoted to improve the characteristics of the electron sources for the future e^+e^- colliders. In particular the PHIN JRA is addressing the

- Development of the high charge e beam (drive beam) for the RF power source of the two-beam linear collider CLIC (CERN);
- Realisation of high brightness e⁻ beam for CLIC main beam studies and for tests of linear collider sub-systems;
- Realisation of the first photoinjector that uses a laser driven photocathode in a superconducting RF gun for application in ELBE (Rossendorf) and possible use in TESLA Test Facility (DESY);
- Study of the TESLA electron source;
- Realisation of new electron source for NEPAL (Orsay) test stand;
- Realisation of the new injector for TEU-FEL (Twente).


The technique of charge production studied in this JRA is the interaction of lasers with photoemissive materials within an RF field. The goal is to produce an electron source with brightness unachievable with conventional thermoionic guns. Two features contribute to improve simultaneously the charge, the current and the emittance of the beam: the first is the fact that the electron current density production is more efficient in the photoemission process than in the thermoionic one. The second is that the voltage on the cathode, necessary to reduce the space charge and the electron shielding effects, is much higher in an RF gun (100 MV/m) than in a DC thermoionic gun (200 kV/m). As a consequence, the peak current from a photoinjector is at least one order of magnitude higher than from a thermoionic injector and the emittance is one order of magnitude lower.

As said before, one of the main PHIN JRA topics concerns the CLIC drive beam: the requests on the CLIC test facility (CTF3) drive beam photoinjector are very challenging, as shown in the following table, for the long train of pulses, the high charge per pulse, the pulse to pulse charge stability, the photocathode lifetime and the temporal structure.

	Unit	CTF3
Pulse charge	nC	2.33
Pulse width (FWHH)	ps	10
Peak current	А	240
Number of pulses	-	2310
Distance between pulses	ns	0.667
Charge stability	%	± 0.1
Train duration	μs	1.54
Train charge	μC	5.4
Repetition rate	Hz	5
Average current	mA	0.026
Minimum QE at λ_{laser}	%	1.5
Minimum lifetime at QE_{\min}	h	100
Laser Average power at the cathode	W	0.008

CTF3 Drive Beam Parameters

CTF3 Laser system

An alternative photoinjector is also explored: an energetic and bright electron beam is generated from the interaction of a high intensity laser with a gas jet. The electric field generated in the plasma of the order of 1 TV/m boosts the plasma electrons from 0 to 200 MeV in less than 1 mm. The produced electron beam can have a very good quality with a normalized emittance smaller than 2π mm-mrad, and a transverse initial size of the order of a few hundred microns. Regarding this subject, PHIN JRA aims at the production of a mono-energetic electron beam of a few hundred MeV ($\Delta E/E<0.1$, normalized emittance<0.1 π mm-mrad), and of a mono-energetic electron beam with a variable energy from 1 to 50 MeV.

The development of a superconducting photoinjector is also proposed in the PHIN JRA: the superconducting cavity of the RF gun is a TESLA type half cell closed by shallow cone with a centered hole in which the cathode is situated. Special insulation and RF filters are inserted to decouple the cathode zone from the rest of the cavity. The goal is to produce very high quality beam with charge per pulse and temporal structure optimized for ELBE superconducting accelerator and for TESLA test facility.

The goal of the PHIN JRA is to perform R&D on charge-production by lasers and to improve or extend the existing infrastructures in order to fulfil their objectives. The JRA will allow one to create a synergy of efforts for various photoinjector applications and therefore to identify and deal with common problems.

The main objectives are:

- to produce long trains of high charge electron pulses with an unprecedented stability in terms of pulse-to-pulse charge, and transverse and longitudinal structure;
- to develop a new generation of photoinjectors with a superconducting RF gun;
- to test of a very promising alternative electron source based on laser-plasma acceleration.

The completion of these three subjects will put the participating laboratories at the forefront of electron production.

The specific objectives are:

- Study and model the beam dynamics in the RF gun;
- Develop normal and SC RF guns for medium-high charges;
- Optimize the RF guns in order to satisfy thermal constraints and vacuum requirements of photocathode;
- Optimize the combined system laser-photo-cathode for various applications, seeking for a trade-of between cathode lifetime, laser power and wavelength;
- Develop new photocathodes and methods to improve their stability and durability under various modes of operation, including laser duration and power;
- Study and develop optical and laser installations for the generation of the various space and time beam distributions related to the various applications;
- Investigate means of generating complex timing, and of shaping laser pulses;
- Develop necessary instrumentation;
- Make the necessary developments to improve existing installations.

The objectives are addressed by bringing together the expertise which the various European Institutes developed in one of the three main areas of interest for the photo-production of electrons, which are:

- Charge production and photocathodes.
- Lasers, including high-power, short-pulse and low-power, long-pulse lasers.
- RF guns, beam-dynamics studies, flat-beam optics.

An important aspect of the project is to make existing infrastructures available to all participants in order to perform tests and R&D experiments. Conversely, the R&D activities made in common may result in extensions and improvements of these existing infrastructures for the benefits of all partners.

Bringing the efforts of each laboratory together is one of the most beneficial aspects, since industry doesn't provide complete systems of photo-injectors, which, therefore, need to be specifically developed for each application.

The outcome of this R&D program is also of general interest for the industry working on related domains like the lasers.

8. R2.2. Participants in the activity

Table 8.R2.2a lists the participants with their involvement in the work packages described in the following section.

Participant number	Participant	WP1: M&C	WP2: CP	WP3: LAS	WP4: GUN
3	CNRS	Х	Х	Х	Х
	CNRS-Orsay	X	X	X	X
	CNRS-LOA		X	X	X
9	FZR-ELBE	Х	Х		X
10	INFN	Х		Х	X
	INFN-LNF	X		X	X
	INFN-Mi			X	
11	TEU		Х	Х	
17	CERN	Х	Х	Х	X
20	CCLRC-RAL	Х		Х	

Table 8.R2.2b shows the detailed involvement of each participant, together with an estimate of their total contribution to the activity in person-months over the 5 years.

Part. Numb.	Institute	WP/Topic	Roles	Person- months
3	CNRS	WP1-4		
		WP1: M&C	WP3-GUN Coordinator	3
	CNRS-Orsay	WP2: CP	Photocathodes study	44
	CIVILS-OFSUY	WP3: LAS	Laser commissioning	75
		WP4: GUN	Gun prototype construction. Test stand diagnostics	219
		WP2: CP	Alternative photo electron production	60
	CNRS-LOA	WP3: LAS	Pulse shaping test in existing laser system	0
		WP4: GUN	Measurement line for test with mono-energetic beams	102
		WP1: M&C	WP2-CP Coordinator	3
9	FZR	WP2: CP	Preparation equipment, cathode development	108
		WP4: GUN	Study and construction of the SC prototype gun.	111
10	INFN	WP1,3,4		
		WP1: M&C	JRA-PHIN Coordinator	6
	INFN-LNF	WP3: LAS	Laser-RF Synchronisation. Feedback	48
		WP4: GUN	Beam Dynamics studies	108
	INFN-MI	WP3: LAS	Waveform for laser ultra-short pulses	132
11	TEU	WP2: CP	Photocathode development	72
11	IEU	WP3: LAS	Laser test for high current	10
		WP1: M&C	JRA-PHIN Coordinator deputy	3
17	CERN	WP2: CP	Photo-cathode development	64
1/	UEKIN	WP3: LAS	High power laser system for CTF3 commissioning	32
		WP4: GUN	CTF3 gun construction	68
20	WD1: M&C WD2 LAS Coordinator		3	
20	CCRLC-RAL	WP3: LAS	Design, construction and test of complete laser system	51

8. R2.3 Outline implementation plan for the full duration of the activity (including milestones and deliverables)

The JRA-PHIN is divided into four work packages, which correspond to the main areas of interest indicated above. The content of each work-package is detail below.

Work Package 1: Management & Communication (M&C)

The following tasks are treated:

- Oversee and coordinate the work of the entire JRA. (INFN-LNF, CERN, CCLRC, FZR, CNRS-Orsay);
- Organize the Steering Committee meeting (INFN-LNF, CERN);
- Ensure proper reviewing and reporting as well as dissemination of the knowledge within the JRA and the CARE project (INFN-LNF, CERN);
- Create a web site with tools and databases (INFN-LNF, CERN, CCLRC, FZR, CNRS-Orsay).

Work Package 2: Charge Production (CP)

The objective of the charge production work package is the development of semiconductor photocathodes with improved properties, especially lifetime and quantum efficiency. The following tasks are treated:

- Construction, preparation and extension of test equipments (FZR, CNRS, TEU);
- Improvement of fabrication technology, basic knowledge (CERN, FZR);
- Study of new materials (CERN, FZR);
- Tests at different labs and comparative studies, time measurement diagnostics (CERN, FZR, TEU);
- Study of an alternative way for photoelectron production (CNRS-LOA), using a highintensity laser with a gas jet. Acceleration of electrons by laser wake fields up to several 100 MeV. Production of mono-energetic electrons.

Deliverables:

The deliverables that end the related tasks (task number of Gantt chart in brackets), are:

- Reports on photo-cathode production and improved preparation equipments. [2.1]
- Photocathode preparation chamber with ultra high vacuum technology.[2.2]
- Reports on test results, with optimised properties according to the needs of the photoinjectors of the project partners, improved diagnostics. [2.3]
- Reports on tests with the generation of high energy (50 200 MeV) mono-energetic electron beams with low emittance for injector application. [2.5]

Work Package 3: Lasers (LAS)

The work-package is divided into two tasks:

First Task

Design and develop laser system to meet the requirements of the CTF3 photo-injector (program already undertaken in CTF2). The laser system will consist of:

- High power mode-locked oscillator.
- One or more high power amplifiers.
- Frequency conversion stage to generate the required UV wavelength for the photocathode.

Development activities:

- Increase the power of existing oscillators (CCLRC, CNRS-LOA).
- Optimise the design of the amplifiers for required power output at minimum cost and complexity (CCLRC, CERN, CNRS-LOA).
- Efficiently convert the laser output wavelength to UV using new harmonic generator crystals (CCLRC, CERN, CNRS-LOA).

- Establish ultra-high stability including the use of charge and pointing stability feedbacks (CCLRC, CERN, INFN-LNF).
- Ensure sub-picosecond synchronisation to the RF (CERN, INFN-Mi).

Second Task

Investigate and test systems for complicated, ultra-fast, optical waveforms according to user specifications, as those for the new generation of FEL, with benefits for linac photo-injectors. Test and study of Ti:Sa laser pulse jitter, laser diagnostics and stability on photocathode. The waveform systems considered are:

- Liquid Crystal Modulator-Computer Programmable (LCM-CP) system.
- Collinear acousto-optic programmable dispersive filter (AOPDF-DAZZLER).

Development activities:

- Computer codes for the algorithm driving the shaping system (INFN-Mi, CNRS-LOA).
- Tests of both the LCM-CP and the AOPDF-DAZZLER (INFN-Mi, INFN-LNF, CNRS-LOA).

Deliverables:

The deliverables that end the related tasks (task number of Gantt chart in brackets), are: *Laser-System meeting CTF3 requirements:*

- Development of a high power oscillator [3.1.1]
- Development of high power laser amplifiers [3.1.3]
- Development of high efficiency frequency conversion stages [3.1.4]
- Report on tests of feedback systems [3.1.6]

Pulse shaper:

- Report on model, waveform synthesis [3.2.1]
- Report on comparison of various temporal-profile pulses [3.2.2, 3.2.3]
- Report on photo-cathode test results on timing, jitter and stability [3.2.4]

Work Package 4: RF guns and beam dynamics (GUN).

The aim of this WP is the development of RF guns for high charge and high average current or very short pulses. Improve the associated test stands. Spin-off for high power light-sources is expected. The work-package is divided into three tasks.

First Task

- Design and technical evaluation of photo-injectors for high charge, high average current, or short pulses (CNRS-Orsay, CERN).
- Numerical simulation and engineering optimisation for a Super-conducting RF photogun; cavity, coupler, RF focusing (FZR).

• Design optimisation and construction of new SC RF gun prototype (FZR).

Second Task

- Study and construction of two RF guns at 3 GHz for the injectors of the existing test facilities CTF3 and NEPAL (CNRS-Orsay).
- Installation and commissioning of long pulse train of high charge and short bunches in CTF3 (CERN, INFN-LNF).
- Improvement of test stand NEPAL in order to achieve the gun tests mentioned above (CNRS-Orsay).

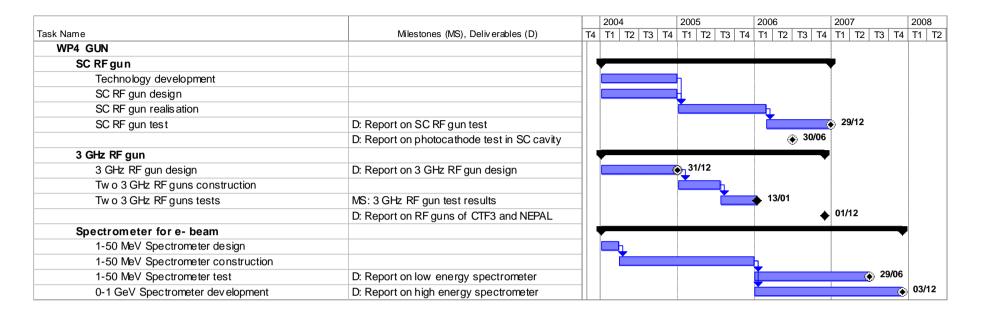
Third Task

For the alternative photocathode device proposed by CNRS-LOA, development (beam dynamics) and acquisition of:

- 0-50 MeV compact electron spectrometer (CNRS-LOA, CERN)
- 0-1 GeV electron spectrometer (CNRS-LOA, CERN)

Deliverables:

The deliverables that end the related tasks (task number of Gantt chart in brackets), are:


- Report on design evaluation of high-charge photo-injector [4.2.1]
- Report on engineering of SC photo-gun [4.1.1]
- Prototype of SC gun realisation [4.1.4]
- Development of a RF gun for CTF3 and NEPAL (high-charge short bunches) [4.2.2]
- Prototype of RF gun with CLIC characteristics for test [4.2.3]
- Spectrometers at different energy range for mono-energetic e⁻ beam diagnostics [4.3.1, 4.3.2, 4.3.3]
- Report on the improvements of test facilities CTF3 and NEPAL [4.2.3]

The following Gantt chart presents the implementation plan for the whole duration of the JRA-PHIN for each of the workpackages. Milestones and deliverables are included.

ANNEX I - DESCRIPTION OF WORK for CARE - Contract number: RII3-CT-2003-506395

ak Nama	Milastanas (MC) Deliverships (D)		2004		<u> </u>	200		To	20				007			2008
sk Name	Milestones (MS), Deliverables (D)		T1	12 13	8 T4	T1	12	13 1	4 11	12	T3 1	14 T	1 T2	2 13	T4	[1]
WP1 Management & communication		_														
Activity coordination						1										
Communication		_ 7			10.5										T	
Web site creation	D: Release of the web site			31	/05											
Maintainance and upgrade						1										
WP2 Charge Production																
High efficiency photocathode comparison																
	D: Report on photocathode studies			کې چې	30/06											
Photocathode preparation equipment construction	MS: Photocathode equipment test						•	30/0	6							
Photocathode high field R&D								*								
High charge photocathode development for SC cavity																
	D: Report on new photocathode materials											0 چ	1/12			
100 MeV monoenergetic beam R&D																
	D: Report on laser driven plasma source													02 0	/07	
WP3 Laser																
Laser System			_							•						
High power oscillator construction						L.				-						
3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	D: Report on oscillator design				/05											
Design and realisation amplifier		-		•												
	D: Report on Laser oscillator test results					20	/12									
Test amplifier						™		Ъ								
	D: Report on Laser amplifier	-				_		30/05								
UV Harmonic generator devel.							Ť									
ov hamonic generator devel.	D: Report on UV crystal comparison	_				-	-	20/0	6							
	MS: Amplifier test results	_					•		30/09							
Test of the system	MS: Laser system test and delivery at CERN	_						₩~			/03					
Feedback and test	INS. Laser system test and delivery at CERN	_						.		• •	,					
		_						r		_						
Pulse shaping system		_ 1														
Simulation and design				<u> </u>												
Phase mask acquisition and test		_					1									
Dazzler acquisition and test								oo/-								
	D: Report on pulse shaper comparison						•	. 30/0	6							
Timing jitter stability test								[

ANNEX I - DESCRIPTION OF WORK for CARE - Contract number: RII3-CT-2003-506395

8. R2.4 Expected outcome

8. R2.4.1 Application to European research infrastructures

The R&D activities on photoinjector proposed in this JRA are devoted to improve the performances of the new generation of electron injectors for future accelerators. The project results are mainly addressed to the high-energy linear colliders community. Nevertheless, all European infrastructures that are involved in the accelerator physics and related uses should be extremely interested in the exploitation of the JRA results.

The existing infrastructures that immediately benefit of the JRA on photoinjector are:

- **CTF3** (CLIC test facility) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new power source for CLIC. CTF3 will be used to test the CLIC critical components and in particular will provide the 30 GHz RF power needed to test the main beam accelerating structure. The photoinjector will be an important upgrade of this facility allowing:
 - Flexibility in manipulating the time structure of the electron beam.
 - Smaller transverse and longitudinal emittances, resulting in more efficient beam transport and bunch length manipulation.
 - No low energy tails.
 - Dramatic reduction of radiation losses.
- **NEPAL** is a multipurpose RF test stand. The new photoinjector will be a major improvement in order to test new beam dynamics models, instrumentation and diagnostics.
- **ELBE** is a super-conducting RF test stand. The SC RF Gun developed in the JRA allows to use such SC RF gun in the TESLA project and in the FEL community due to:
 - Small transverse and longitudinal emittances.
 - High charge electron pulse.
- **TEU FEL** is a Free Electron Laser emitting in the far-infrared range. The new photocathode material developed in the JRA could permit to increase significantly the brightness of this source and improve stability and operation time of photo cathodes.

8. R2.4.2 Outline of the exploitation of results

The aim of the PHIN activities is to study, design and realize a new series of photo-injectors for the applications described before. The first prototype of the entire system made up of laser, photo-cathode and RF gun will be immediately applicable, as direct exploitation, in the CLIC Test Facility (CTF3). The second prototype will be used for improving the performance of the NEPAL test stand and the superconducting RF gun will improve the ELBE test stand with large benefits for all the infrastructure users.

The results of the PHIN-JRA will be freely available to the entire scientific community.

The major benefits for other communities come from the studies on the more challenging characteristics of the different components of the photoinjector system (*i.e.*, very stable high power laser, high efficiency and long lifetime photocathode, etc.). The potential users are in the following research fields:

- light sources and free-electron lasers,
- medical imaging,
- picosecond and femtosecond chemistry,
- cancer therapy,
- high brightness e beams.

8. R2.4.3 Monitoring success and impact of the activity

The achievements of the electron beam parameters, in terms of charge per bunch, total current transverse and longitudinal emittance, energy at the photoinjector exit, pulse repetition rate, etc., for each photoinjector described before [8.R2.1], are the main indicators of the success of the activity.

The improvements of the overall performances of the existing facilities with the use of the developed or improved photoinjectors are also direct monitors of the success of the activity.

The number of citation of the reports published during the execution of PHIN as well as the adoption of the technical solution developed in PHIN for other projects are indicators of the impact of the PHIN activities.

8. R3 Activity JRA3: High Intensity Proton Pulsed Injector (*HIPPI*)

8. R3.1 Description and objectives of the activity

Requests from the various physics communities for secondary particle beams have recently drastically increased. Therefore, a number of European laboratories have pursued separate development programmes concerning the high intensity proton linac that can deliver the primary beam onto the target. In particular:

- CEA and CNRS-IN1P3-Orsay on the low-energy section (3 MeV) (IPHI project),
- Frankfurt University (Germany) on high-efficiency accelerating structures,
- CERN on chopping and medium-energy accelerating structures,
- CCLRC-RAL on the chopper design, ion source and RFQ development,
- INFN-Mi (Italy), CEA (France), FZJ (Germany), CNRS-IN1P3-Orsay and CNRS-LPSC (France) on superconducting accelerating structures.

All these laboratories, together with GSI (Germany), have developed beam dynamics tools aimed at mastering high-intensity beams in linacs.

The overall objective of the HIPPI JRA is to foster the development of a common European technology base for the construction of high intensity pulsed linear accelerators. The goal is to surpass the level of competence achieved on the other continents and provide the necessary knowledge to build world-class accelerators in Europe. To validate this goal, accelerating structure prototypes will be build and their performances will be documented.

This will be achieved by coordinating the above-mentioned efforts, realising a systematic study of several technological alternatives for beam energies 200 MeV.

Although the detailed specifications will only be defined at the first general meeting, the specific basic objectives are as follows:

- For normal-conducting accelerating structures: Achieving shunt impedance ZT^2 (power efficiency) higher than 40 M Ω /m in the energy range 3-100 MeV, at a competitive cost with respect to conventional DTL.
- For superconducting accelerating structures:
 - In the energy range 100-200 MeV, achieving gradient exceeding 7 MV/m with $Q \ge 10^{10}$ at a construction cost comparable to normal-conducting structures.
 - Developing efficient superconducting structures down to beam energies around 5 MeV.
- For beam chopping: Achieving switching time smaller than the distance between bunches at 352 MHz (about 2 ns). Moreover, the overall design of the chopper-line has to minimize emittance growth.
- For beam dynamics:
 - Validating experimentally simulation codes
 - Establishing rules for design allowing one to keep the uncontrolled beam loss below 1W/m (threshold for hands-on maintenance) all along a high energy linac (> 1 GeV) and the associated transfer lines.

The above specific objectives are treated within 4 Work Packages, which are described in the section on the implementation plan. A fifth Work package will concern the management of HIPPI.

8. R3.2. Participants in the activity

Table 8.R3.2a lists the participants and their involvement in the five work packages described in the following section.

Participant number	Short name	WP1:M&C	WP2: NC	WP3: SC	WP4: CHOP	WP5: BD
1	CEA	X	Х	Х	X	Х
3	CNRS	X	Х	Х	X	Х
	CNRS-IN1P3- Orsay			X		
	CNRS-LPSC	X	X	X	X	X
4	GSI	X				Х
5	IAP-FU		Х	Х		Х
7	FZJ			Х		Х
10	INFN			Х		Х
	INFN-Mi			X		X
17	CERN	X	X		X	Х
20	CCLRC-RAL		Х		X	Х

Table 8.R3.2a: List of participants

Table 8.R3.2b shows the detailed involvement of each participant, with an estimate of their total contribution to the activity in person-months over the 5 years.

Table 8.R3.2b: Size of the research effort

Participant number	Shot name	Shot name WP/Topic Roles		Person- month
		WP2/DTL	Design and construction of cold model, quadrupoles and alignment system. RF measurements	80
		WP2/CCDTL	Measurements	2
		WP3/Elliptical	Construction alternate cavity and coupler, construction and operation of the 700 MHz test stand, tests.	84
1	CEA	WP4/Chopper line	Beam measurements	2
		WP5/Development	Transport in 3D map, space charge compensation	30
		WP5/Benchmarking	Comparison of codes	10
		WP5/Experiments	Participation to the measurements at CERN	2
		TOTAL	Permanent staff 162, temporary staff 48 persons-month	210

Participant number	Participant	WP/Topic	Roles	Person- month
3	CNRS	TOTAL	Permanent staff 143, temporary staff 44 persons-month	187
	CNRS- IN1P3-Orsay	WP3/Spoke	Evaluation of 2-gaps 352 MHz prototypes, design and construction of coupler & tuner, test of multi-gaps prototype	40
		TOTAL	Permanent staff 32, temporary staff 8 persons-month	40
		WP2/DTL	Design of cold model, measurements	40
		WP2/SCL	Design of model, measurements	48
		WP2/CCDTL	Design of model, measurements	2
	CNRS-	WP3/Elliptical	Contribution to cavity and coupler design	24
	LPSC	WP4/Chopper line	Beam measurements	3
		WP5/Benchmarking	Comparison of codes	30
		TOTAL	Permanent staff 111, temporary staff 36 persons-month	147
		WP5/Development	Improvement to codes, modelling of high current	33
		WP5/Benchmarking	Comparison of codes	60
4	GSI	WP5/Experiments	Simulation and beam experiment at UNILAC	93
•	GDI	WP5/Diagnostics	Profile measurement by fluorescence, non-interceptive bunch measurement, online transmission control	48
		TOTAL	Permanent staff 66, temporary staff 168 persons-month	234
		WP2/HDTL	H-DTL prototyping	48
		WP3/CH	Study, design, fabrication and measurements of a prototype tuning system	54
5	IAP-FU	WP5/Development	LORASR code	20
		WP5/Benchmarking	Comparison of codes	10
		TOTAL	Permanent staff 42, temporary staff 90 persons-month	132
		WP3/Spoke	Evaluation of 700 MHz prototype, design construction and testing of a 352 MHz b 0.48 prototype	117
		WP5/Development	Codes preparation for SC linacs	
7	FZJ	WP5/Benchmarking	Comparison of codes	60
		WP5/Diagnostics	Beam profile monitor for space charge dominated beams	
		TOTAL	Permanent staff 150, temporary staff 27 persons-month	177
		WP3/Elliptical	Preparation test cavity with tuners (fast and slow), tests	18
10	INFN-Mi	WP5/Benchmarking	Comparison of codes	6
		TOTAL	Permanent staff 12, temporary staff 12 persons-month	24

ANNEX I - DESCRIPTION OF WORK for CARE - Contract number: RII3-CT-2003-506395

Participant number	Participant	WP/Topic	Roles	Person month			
		WP2/DTL	Design of cold model, measurements	20			
		WP2/SCL	Design of model, measurements	4			
		WP2/CCDTL	Design of model, measurements	60			
		WP4/Chopper A	Design and test of pre-prototype and full prototype of chopper structure and driver, 2 ns rise time, 500 V	36			
17	CERN	WP5/Development	Code preparation for 3 MeV test stand	18			
1/	CEKN	WP5/Benchmarking	Benchmarking Comparison of codes				
		WP5/Experiments	Simulations and measurements at 3 MeV test stand	12			
		WP5/Diagnostics	Halo measurement device	24			
		WP5/Collimation	Collimator for 3 MeV line	24			
		TOTAL	Permanent staff 144, temporary staff 72 persons-month	216			
		WP2/DTL	Beam dynamics design	72			
		WP4/Chopper B	Design and test of prototype of chopper structure and driver, 2 ns rise time, 1 kV	96			
20	CCLRC	WP5/Development	3D code development, parallelisation, optimisation	30			
		WP5/Benchmarking	Comparison of codes	6			
		TOTAL	Permanent staff 120, temporary staff 84 persons-month	204			

8. R3.3 Outline implementation plan for the full duration of the activity (including milestones and deliverables)

The five Work Packages are outlined. Management and communication matters are covered in the first. Each of the other four Work Packages is focused on a specific technology/competence. Different solutions will be investigated in parallel, and their progress and achievements will be regularly communicated and discussed. Finally, comparative assessments will be published to provide elements for well-justified choices for the upgrades foreseen in the three laboratories (CERN, GSI, CCRLC-RAL).

Work Package 1: Management and Communication (M&C)

The following tasks are treated: oversee and coordinate the work of all work packages, organise steering committee meetings, ensure proper reviewing and reporting as well as dissemination of knowledge within the JRA and the CARE project.

Work Package 2: Normal Conducting Accelerating Structures (NC)

Normal conducting RF structures are good candidates for beam acceleration in a pulsed proton linac, up to an energy exceeding 100 MeV. This is especially true if this is the final energy, as in the case of the three foreseen upgrades, because investment in cryogenic infrastructure can be avoided. The CERN accelerator has the additional requirement to be able, with a high duty factor (14%), to deliver a beam quality that is adequate for a cascaded high energy superconducting linac (no halo). Such differences lead to different choices of RF structures and beam dynamics, which have to be developed in parallel and experimentally compared to help optimise the designs. In the case of CERN, a classical beam dynamics is considered, and the types of structures considered are DTL (Alvarez) for the energy range from 3 to 40 MeV, Coupled Cavity Drift Tube Linac (CCDTL) for 40 to 100 MeV and probably Side Coupled Linac (SCL) above 100 MeV. Design, construction and test of prototypes are planned, to validate the technological choices and help select the economical optimum. For the GSI linac with a final energy of approximately 70 MeV, the "KONUS" beam dynamics is foreseen, with the use of H-mode structures over all the range of energies. Low power model cavities have to be built and measured, and a prototype 352 MHz CH cavity is proposed to be built and tested in a high power test stand at GSI or at CERN. Simultaneous development of these complementary structures in a single JRA will result in an optimum use of the existing infrastructure (high power RF test places, computer codes, etc.), an enlargement of the knowledge accessed by every individual contributor, and finally in a better justified choice of technological solutions in any future realisation.

Work Package 3: Superconducting Accelerating Structures (SC)

Superconducting (SC) RF cavities have much larger efficiency, accelerating gradient and bore aperture than normal conducting (NC) structures. This technology is then expected to be advantageous in a linac in terms of power consumption, construction cost and beam loss. Although this conclusion is well accepted for the high energy part of the accelerator, this is not the case at low energy, mostly because of the short distance required between focusing magnets which reduces the energy gain per real estate meter. On top of that, the Lorentz-force-induced detuning, which modulates the accelerating field in phase and amplitude, becomes larger as the lower energy. This effect has to be particularly taken into account in the case of a pulsed linac, because of the dynamic nature of the induced perturbations and of the possibility of exciting mechanical modes. It is therefore of high importance to improve the knowledge on the comparative performance of SC versus NC accelerating structures to help determine the lowest energy at which low beta superconducting cavities could safely and economically operate.

The associated critical component, required for any high intensity accelerating structure, is the input power coupler. The RF peak power transferred to the beam is typically 500 kW with duty cycles of the order of 10%, resulting also in a high average power. The peak power limitations come mainly from multipactoring and outgassing and are very frequency dependent. Couplers have to be tested up to 1 MW of forward peak power for reliability issues. High power couplers are also being developed in JRA2-WP2 for the needs TESLA but at much lower duty cycle and higher frequency. Tight links between both JRAs will be established to share the construction technology.

Three types of 700 MHz elliptical cavities will be tested in existing vertical cryostats at low power, and two of them in existing horizontal cryostats at full power. In the last test, the cavities will be fully equipped, housed in a helium tank, with tuning system and power coupler. There is presently no test site in Europe equipped with a 700 MHz high power RF source in the MW range. In the frame of this JRA, we propose to realise such a test stand at Saclay, and to make it available to the partners in HIPPI and later to any other interested European teams.

In parallel, two alternative cavity designs at 352 MHz will be analysed. Testing of two spoketype cavities (two-gaps and multigap) is foreseen at low power, and possibly at high power, depending on the availability of a suitable infrastructure. A prototype of the tuning system for a CH resonator will built and tested.

Work Package 4: Beam Chopping (CHOP)

The next generation of high energy, high power proton accelerators must be designed for very low uncontrolled beam loss. In many cases, the beam from a linac is injected into a synchrotron, an accumulator or a compressor ring, and subsequently extracted. Unless suitable measures are taken to control the dynamics of the beam, both processes can lead to considerable particle loss. Loss-free injection and longitudinal capture can be achieved if the linac bunches are precisely injected inside the synchrotron buckets and no particles end-up outside. Beam loss at extraction may be minimised by ensuring that no circulating beam coincides with the field rise-time of the extraction magnet. These demands may be met by selective elimination of sets of bunches in the low energy stages of the linac by using a fast deflector or "beam chopper". The field should rise and fall between the beam bunch interval, so that no partially chopped bunches remain in the machine, and this usually has to be within a period of the order of 2 ns.

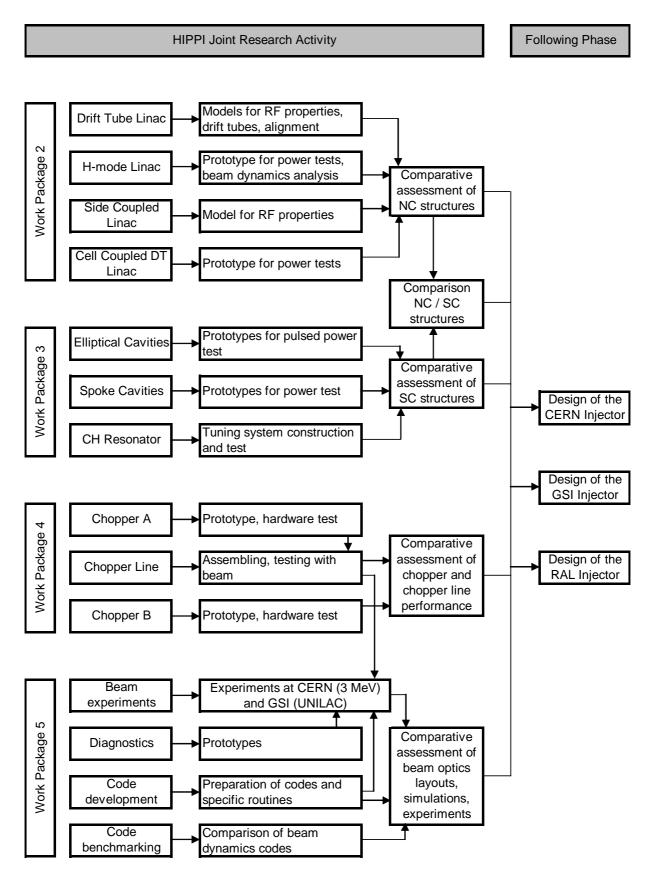
Specifications for these key components are technically challenging, and programmes have been implemented at CERN and CCLRC-RAL based on the development of slow wave (Efield) transmission line structures and high-voltage, fast-transition time pulse generators. Differences in the programmes ensure that a range of ideas will be investigated and there will be benefits from developing each in parallel over similar timescales. Both approaches rely on two successive sets of meander-line structures, but differ in the functioning of the meander lines, in the performance requirements of the driver amplifiers and in the design of the beam dumps. Prototypes of the slow-wave structures, drivers and the beam dumps will be designed, built and tested with beam.

Work Package 5: Beam Dynamics (BD)

Recent studies with high intensity beams have shown that phenomena associated with space charge and beam loss have significant impact on the design of high power proton accelerators. In linacs, beam loss is associated largely with the appearance of a beam halo, which needs to be modelled theoretically and by simulation; it requires appropriate diagnostics and must be collimated to protect the equipment and avoid activation beyond tolerated limits. The joint activity proposed in this work package, combines resources available at the participating accelerator laboratories and universities for the analysis of the following issues:

- 1. Validation and Benchmarking of Simulation Codes. The development of adequate 3D computer codes and the proper modelling of self-interaction by space charge is a crucial issue. Codes must be fast enough to allow large ensembles of particles in order to resolve very small loss fractions. Including the effect of errors jointly with space charge requires a significant enhancement of simulation capabilities. Benchmarking of computer simulation codes against each other and against analytical models will increase the level of confidence in their results. Strategies to minimize halo formation should result from these efforts.
- 2. Experiments on Beam Halo and Emittance Growth. So far, no conclusive experiments on beam halo in high intensity accelerators exist; hence this issue has highest priority. Beam experiments are proposed at CERN, CCLRC-RAL and GSI, where operational conditions, available intensities and diagnostics allow relevant measurements. Their interpretation by means of simulation programs should reveal the adequacy of theoretical and simulation approaches and the methods proposed to minimize beam halo and loss.
- 3. Diagnostics. The acceleration and transport of high power beams also present new challenges for beam diagnostics. While conventional methods continue to be needed, operating conditions at high intensity require modification. New measurement techniques are needed to diagnose the small fractional beam losses, which could cause serious damage to components and produce unacceptable levels of activation. Monitors for direct beam halo measurements must be designed, constructed and tested in existing machines.
- 4. Beam Collimation. Scrapers are needed to localize beam losses in areas designed for that purpose. Injection into rings, where much less aperture is available than in linacs (in particular superconducting linacs), requires highly effective collimators prior to injection. Such schemes should be designed based on simulation data and tested in experiments.

The enclosed Gantt chart presents the implementation plan for the whole duration of the HIPPI-JRA for each of the Work Packages. Milestones and deliverables are included.


ANNEX I - DESCRIPTION OF WORK for CARE - Contract number: RII3-CT-2003-506395

Task Name	Deliverables	Milestones	T4 ⁻	2004 F1 T2 T3		005 T3 T4	2006 T1 T2 T3 T	4 T1	2007 T2 T3 T4	2008 T1 T2 T3	Т
WP2: NOR MAL CONDUCTING STRUCTURES											
Drift Tube Linac] 🕈							· · · · · ·	
DTL design	06/07 Intermediate report						1		CEA;CE	RN;LPSC	
Development of critical DTL components	01/07 Intermediate report	01/07 Prototype ready							CEA		
DTL beam dynamics design	06/08 Intermediate report									R/	L
Optimised DTL design	12/08 Common report									~ •	1/0
H-mode Drift Tube Linac			- I I 🌩							—	
CH model cavity construction, tests	12/05 Model tuning report						IAP-FU				
Prototype design, construction, tests		12/06 Prototype ready									P-F
H-DTL beam dy namics	06/05 Design report					IAP-FU					
H-DTL design finished	12/08 Final report									~ •	1/0
Side Coupled Linac										÷	
RF cold model prototype design, test	12/07 Final report									LPSC;CERI	1
Cell Coupled Drift Tube Linac											
Pre-prototy pe testing	06/05 Intermediate report				CERN;	LPSC;CE/	Å				
Prototype design, construction, test	12/05 Design report	06/07 Prototype ready									N
CCDTL design finished	06/08 Final report									—	1/0
Comparative assessment of NC structures	12/08 Final report							CE	RN;LPSC;CE	A;IAP-FU;RAL	
P3: SUPER CONDUCTING STRUCTURES											
Elliptical cavities			11 🔶							8 9 9	Ţ
Cavity Avertical tests	12/04 Intermediate report				INFN-M	VII;CEA					
Tuner design construction & test	12/05 Intermediate report						INFN	M			
Cavity A assembly									INFN-MI		
Cavity A ready in CRYHOLAB		03/07 Cavity A ready							01/04		
RF Coupler design and test									CEA;LPSC		
Design, construction assembly cavity B									CEA		
Cavity B ready		06/06 Cavity B ready					01/07	7			
700 MHz test stand preparation									CEA		
Test stand ready		03/07 Test stand ready							01/04		
High power pulsed tests cavity A and B	12/08 Final report						CEA;IN	FN-MI	-	1	Ь
Spoke cavities			- I I 🔶		-						
Evaluation of 700 MHz prototype	03/05 Evaluation report				FZ	ZJ					
Evaluation of 352 MHz 2-gap prototype	10/05 Evaluation report				IN2P3-	Orsay					
Design and test of coupler prototy pe						IN2P	3-Orsay				
Design of 352 MHz multi-gap prototype	05/05 Design report		- 두				FZJ;II	N2P3-0	rsay		
Construction of multi-gap prototy pe									FZ	J;IN2P3-Orsa	1
Prototype ready for testing		10/07 Prototype ready							° و 🕹	1/10	
Testing of Prototype	12/08 Evaluation report								· •	1	יא
CH resonator	<u>.</u>		11 🚽		-				_		į,
Study of tuning system	06/05 Conceptual report		- 🔓			hIAP-FU					
Tuning design and fabrication						*			IAP-FU		
Measurements	12/08 Final report								•	1	, I
Comparative assessment of SC structures	12/08 Final report										*

ANNEX I - DESCRIPTION OF WORK for CARE - Contract number: RII3-CT-2003-506395

Task Name	Deliv erables	Milestones	T4	T1	2004 T2 T3	T4	T1	2005 T2 T3	T4 -	2000 T1 T2 ⁻		2007 T1 T2 T			008 T3	T4
VP4: CHOPPING											-				1.0	
Chopper Structure A			11 1	<u> </u>					-						V.	
Pre-prototy pe design and test	03/05 Intermediate report						-	CERN								
Prototype design and construction	06/05 Design report											R N				
Prototype ready		08/06 Prototype ready									/01 ू	09				
Prototype testing (w/o and with beam)	08/07 Final report														CER	Ν
Chopper Line			111	↓ —			-		-					•		
Dump design and construction	06/05 Intermediate report							CERN	N							
Beam line assembling and measurements	12/07 Final report	03/07 Meas. start												CERN;	CEA;LF	SC
Chopper Structure B			11	↓ —			-									
Pre-prototy pe design and test	06/05 Intermediate report							RAL								
Prototype design and construction	06/06 Design report											R	AL			
Prototype ready		06/07 Prototype ready											01/07			
Prototype testing	06/08 Final report														RAL	
Comparative assessment of chopper designs	10/08 Final report															
P5: BEAM DYNAMICS																
Code development			11	↓ —			-					Ý.				
3D code development	12/07 Intermediate report										RAL					
LORASR development	12/05 Intermediate report									AP-FU						
Transport in 3D map, space charge comp.	Annual reports									CEA						
Improvement, modelling high current	Annual reports										GSI					
Code preparation for 3 MeV test stand	06/06 Report											CERN				
Codes preparation for SC linacs	Annual reports											FZJ				
Code benchmarking	Common reports							RAL	;IAP-F	U;CEA;G	SI;CER	N;FZJ				
Simulations and experiment at UNILAC	12/06 Intermediate report										GSI					
Simulations and experiment at CERN	12/08 Intermediate report															CE
Diagnostics and collimation			11	↓ —			-		-						•	
Profile measurement by fluorescence	07/06 Final report	03/05 Prototype ready									GSI					
Non-interceptive bunch measurement	12/06 Final report	06/05 Components ready					1		-			GSI				
Online transmission control	10/07 Intermediate report												GS	<u>.</u>		
Halo meas. device design, construction	06/05 Prototype, report	06/05 Prototype ready	11					CER	RN							
Beam profile monitor for high intensity	06/07 Intermediate report		1 -									I			FZJ	
Collimators design	12/06 Design report	12/06 Prototype ready										CERN				
Comp. assessment of dynamics and meas.	12/08 Final report															-

The following Pert diagrams shows the interconnections between the tasks.

8. R3.4 Expected outcome

8. R3.4.1 Application to European research infrastructures

The R&D effort in HIPPI will be the basis for improvements at three major European laboratories, broadening at the same time their potential for physics and the size of the interested scientific community. More specifically, the following outcome are expected:

- CERN :
 - Improve the proton flux for fixed target experiments
 - Upgrade the neutrino beams for CNGS experiment
 - Increase the proton flux for the ISOLDE facility
 - Improve the stability, reliability and integrated luminosity of the LHC
- CCLRC-RAL :
 - o Increase the neutron flux of ISIS and the potential for neutrino beams
- GSI :
 - Increase the proton flux of the heavy ion synchrotron (SIS)

Considering the magnitude of the resources that the European countries have already devoted to the construction of the CERN, GSI and CCLRC-RAL complex of accelerators, these improvements would significantly increase their potential value for physics research in the future for a marginal additional cost.

The following Physics programs will benefit from the proposed R&D and upgrades:

- Neutrino physics: The community has shown a substantial interest in the proposed upgrades at CCLRC-RAL and CERN. A high power proton driver is an important element for achieving very high intensity neutrino beams. The R&D overtaken in HIPPI will be directly instrumental to the realisation of such state-of-the-art facility.
- Radioactive ion physics: the ISOLDE experiments at CERN would immediately benefit from the higher proton flux from an improved injector. Furthermore, the EURISOL study, has shown that the next generation facility using the Isotope on line separation technique needs a two orders of magnitude larger proton flux. The upgrades considered in the HIPPI JRA could constitute a first step towards the necessary proton driver.
- Spallation Neutron sources: A high intensity proton driver reaching about 1 GeV is necessary for the next generation of Spallation Neutron Source. The HIPPI R&D program would be very useful for the design of such a future facility.
- High Energy frontier Physics: A more robust operation of the Large Hadron Collider would be achieved by an improved performance injector complex. The development undertaken in HIPPI will be directly applicable for such an improvement. Moreover, this improved injector will be the first step toward the luminosity upgrade of the LHC

8. R3.4.2 Outline of the exploitation of results

The results of the HIPPI JRA will consist in the development of new technologies for the design and construction of high intensity pulsed linear accelerators. The prototypes, the calculation tools and more generally the expertise developed in this frame will be the basis for the design and construction of the next generation of accelerators in Europe. They will be exploited in priority by the three laboratories interested in upgrading their accelerator complex.

However, the outcomes of HIPPI will not be patented, and according to the policy of the partner institutions, will be available to the scientific community and to industrial companies interested in accelerators for technological applications (generation of radio-isotopes for medicine, biology ...).

The reports produced in the frame of HIPPI will be referenced and will be accessible through the scientific information distribution system of the partner laboratories. Part of the reports, integrally or in a condensed form, will be published in scientific journals and in the proceedings of international conferences.

8. R3.4.3 Monitoring success and impact of the activity

The specifications to be met by the various prototypes will be defined at the first general meeting of HIPPI with the approval of the External Scientific Advisory Committee. The ambition is to surpass the performance of the machines presently under construction in the US or in Japan. The success will be measured by comparing the technical goals described in the above mentioned objectives of the JRA to the achieved performances. An important parameter to evaluate the technical solutions will be their cost, which has to be smaller or equal (for a better performance) to that of the previous generation of European linear accelerators.

The number of citation of the reports published during the execution of HIPPI as well as the adoption of the technical solution developed in HIPPI for other projects are indicators of the impact of the HIPPI activities.

8. R4 Activity JRA4: Next European Dipole (*NED*)

8. R4.1 Description and objectives of the activity

Upgrades of existing high-energy particle accelerators and/or designs of new machines call for the development of higher-field and higher-field-gradient superconducting dipole and quadrupole magnets. Since the Tevatron, the most widely used superconductor is a ductile alloy of niobium and titanium (NbTi), whose world production is around 1500 t/year (mainly in the form of multifilamentary composite wire for Magnetic Resonance Imaging magnet systems). The LHC magnet R&D program has demonstrated that the limit of NbTi at 1.8 K lies in the 10-to-10.5-T range and that to go beyond the 10-T threshold, it is necessary to change the superconducting material.

At present, High Temperature Superconductors (HTS) are not yet ready for large-scale applications requiring high-current densities in high magnetic fields, and it is likely that it will take at least another decade before they become competitive. In the meantime, the only serious candidate to succeed NbTi is the intermetallic compound Nb_3Sn , whose world production is around 15 t/year (also in the form of multifilamentary composite wire, used mainly for high-field Nuclear Magnetic Resonance magnet systems).

 Nb_3Sn has a critical temperature (T_C) and an upper critical magnetic flux density (B_{C2}) that are about twice those of NbTi. However, once formed, Nb_3Sn becomes brittle and its critical parameters (T_C , B_{C2} and J_C) are strain-sensitive. The brittleness and strain sensitivity of Nb_3Sn require a different approach to all manufacturing processes, and, so far, have limited its use to specific, small-scale applications.

Although Nb₃Sn technology is not yet mature, the recent progress, described above, indicates that it could be at hand for the high-field and high-field-gradient accelerator magnets needed for the LHC upgrade and beyond. However, the European laboratories are presently lagging behind the vigorous efforts carried out in the USA and they need to bridge the gap if they want to stay at the technology frontier achieved with LHC.

The main motivation of the NED JRA is to lay the foundation of an integrated European effort towards

- bringing Nb₃Sn technology to maturity for accelerator magnet applications and
- boosting the competitiveness of European laboratories and European industry with respect to their American counterparts.

Therefore the main objectives are

- 1. to promote high-performance Nb₃Sn wire development in collaboration with European industry to stay abreast of American manufacturers and produce a number of representative unit lengths of high-performance Nb₃Sn cables (aiming at a non-copper critical current density of 1500 A/mm² at 4.2 K and 15 T),
- 2. to develop a preliminary design of a large-aperture, high-field Nb₃Sn dipole magnet model that could push the technology well beyond present LHC limits,
- 3. to carry out some investigations on how to improve Nb₃Sn conductor insulation and its heat transfer properties by undertaking
 - i. limited heat-transfer studies on insulated Nb₃Sn conductor
 - ii. limited R&D studies on Nb_3Sn conductor insulation.

The program of this JRA will be accomplished by a collaboration made up of most European laboratories involved in high-field, superconducting accelerator magnet development, working together with preeminent industrial partners in superconducting wire and cable production. Such a collaboration, on forefront Nb₃Sn R&D, is original and unique in Europe.

In addition, the participants are investigating ways to obtain more resources either through their funding agencies and/or additional collaborators. The objective is to build a dipole magnet model which will allow one to bring Nb₃Sn technology to maturity for very high field accelerator magnet applications. Such magnets are necessary for the improvement of infrastructures, such as LHC.

8. R4.2. Participants in the activity

Table 8.R4.2a lists the participants and their involvement in the work packages described in the following section.

Participant number	Participants	WP1: M&C	WP2: TSQP	WP3: CD	WP4: IDI
1	CEA	Х	Х	Х	Х
10	INFN	Х	Х	Х	
	INFN-Ge				
	INFN-Mi				
11	TEU	X		Х	
15	WUT	X	X		
17	CERN	X		Х	
20	CCLRC	Х		Х	Х
	CCLRC-RAL	X		X	X

Table 8.R4.2a: List of participants

Table 8.R4.2b shows the detailed involvement of each participant, together with an estimate of their total contribution to the activity in person-months over the 5 years.

Participant number	Participant (cost model)	Task	person-months
		1.1 Activity Coordination	9
		1.2 Meetings	
		2.2 Heat Transfer Measurements	27
1	CEA (FC)	3.4 Wire Development	
		3.5 Wire Characterization	9
		4.4 Innovative Insulation	6
		subtotal CEA	51
		1.2 Meetings	
		2.1 TSQP Coordination	6
10	INFN (AC)	2.3. Quench Protection Computation	12
10	INFIN (AC)	3.4 Wire Development	1
		3.5 Wire Characterization	12
		subtotal INFN	31
		1.1. Activity coordination	3
		1.2 Meetings	
11	TEU (FC)	3.4 Wire Development	1
		3.5 Wire Characterization	9
		3.7 Cable Characterisation	3
		subtotal TEU	16
		1.2 Meetings	
15	WUT (AC)	2.2 Heat transfer measurements	6
		subtotal WUT	6
		1.2 Meetings	
		3.1 CD Coordination	
17	CERN (AC)	3.3 Specifications' Drafting	3
17	CERN (AC)	3.4 Wire Development	12
		3.6 Cable Development	3
		subtotal CERN	18
	_	1.2 Meetings	
		3.2.Field calculations for a 15 T large	0
		bore magnet, conductor definition	9
20	CCLRC (FC)	4.1 IDI Coordination	3
		4.2 Specifications' Drafting	3
		4.3 Conventional Insulation	15
		subtotal CCLRC	30

Table 8.R4.2b: Size of the research effort

8. R4.3 Outline implementation plan for the full duration of the activity (including milestones and deliverables)

The work to be carried out in NED JRA is included within four Work Packages.

Work Package 1: Management and Communication (M&C) oversees and coordinates the work of all work packages, organizes Steering Committee meetings, ensures proper reviewing and reporting as well as dissemination of knowledge within the NED JRA and the CARE project.

Work Package 2: Thermal Studies and Quench Protection (TSQP) includes measurements of heat transfer through Nb₃Sn conductor insulation and quench protection computations.

Work Package 3 Conductor Development (CD) encompasses Nb₃Sn conductor development and characterization.

Work Package 4: Insulation Development and Instrumentation (IDI) includes implementation studies of various types of conductor insulation which are applied in the cable characterisation experiments in WP3.

The Work Packages are divided up into Tasks and Sub-Tasks, listed on the left-hand side of the enclosed Gantt Chart which provides a detailed schedule over the 3 years of the Activity.

Since the Work Packages are fairly inter-related, a number of milestones have been defined when critical Tasks or Sub-Tasks must be completed and reviewed. These milestones, which have not been reported on the Gantt for clarity, are listed in Table 8.R4.3.

Task Name	Milestone (MS), Deliverable (D)		2004 T1 T2 T3 T4	2005 4 T1 T2 T3 T4	2006 T1 T2 T3 T	2007 [4 T1 T2
WP1 Management and Communication (M&C)		•				-
Activity Coordination						
Meetings		•				-
Steering Committee Meetings						
External Scientific Advisory Committee Meetings				1		
WP2 Thermal Studies and Quench Protection (TSQP)		•				•
Work Package Coordination						
Heat Transfer Measurements		•				•
Drafting of Test Facility Specifications						
Cryostat Design and Fabrication						
Cryogenic Module Design and Fabrication				h.		
Facility Integration and Qualification				<u>Ľ h</u>		
	MS: Facility Commissioning			01/04		
Measurements and Analyses						D h
	D: Interim Report on Heat Transfer Measurements				30/12	
	D: Final Report on Heat Transfer Measurements					29/1
Quench Protection Computation				h		
	D: Interim Report on Quench Performance			4 30/12		
	D: Final Report on Quench Protection			30/06		
WP3 Conductor Development (CD)		•				-
Work Package Coordination						
Cable Definition from Field Computations of a 15 T Dipole Magnet						
	D: Report on 15T Dipole Magnet Design			30/12		
Specifications' Drafting						
	D: Report on Specifications for Wire and Cable		¥_30/0	6		
Wire Development					 h	
	MS: First Results on Wire Development			30/06		
	MS: Wire Production				🐳 30/	06
Wire Characterization		•				
Definition of Measuring Procedures						
Wire Ic Measurements						
At CEA					 h	
At INFN-Mi					F	
At TEU						
Wire Magnetization Measurements						
	MS: More Results on Wire Development				29/12	
	D: Final Report on Wire Development				👗 30/	06
Cable Development	· · ·				-	-
Cable Characterization						
	MS: Cable Production					01/0
	D: Report on Cable Performance					01/0

ANNEX I - DESCRIPTION OF WORK for CARE - Contract number: RII3-CT-2003-506395

		2004			2005			2006		2007		
task NameMilestone (MS), Deliverable (D)T4T1T1T2T3T4T1T1T2T3T4T1T1T2T3T4T1T1T2T3T4T1T2T3<	T1	Т										
WP4 Insulation Development and Implementation (IDI)		÷-								Ý		
Work Package Coordination							_					
Specifications' Drafting				_								
	D: Report on Specifications for Conductor Insulation		- 🐳	30/06	5							
Implementation Study of Conventional Solution												
Litterature Survey				ľη								
	MS: Development of the Test Plan		-	3 <mark>0/0</mark>)7							
Tooling Preparation				Ŭ-	1							
Compoment Supply					h							
Iterative Tests												
Data Analysis							Ľ,					
	D: Report on Conventional Insulation						÷	28/12				
Implementation Study of Innovative Solution			- Y			-						
Tape Weaving Trial				I	I —							
Pre-impregnation and Wrapping Bench				•		<u> </u>						
	D: Report on Innovative Insulation					30	0/06					

8. R4.4 Expected outcome

8. R4.4.1 Application to European research infrastructures

During the last decades superconductivity has gained an unprecedented importance both in accelerator and detector technology for newly developed particle accelerator experiments and infrastructures. Apart from the superconducting RF-cavities, relying merely on Nb-film technology, all accelerator and detector magnets have utilized NbTi superconductors because of their price, relative ease of handling and matured industrial manufacturing infrastructure. Demanding state-of-the-art technology in every respect for these facilities with a projected life-time of at least 15 years has also pushed the usage, manufacturing and performance of NbTi conductors to their limits and it is now required to look for alternative candidates.

The urgency of developing Nb₃Sn technology beyond its current status has been clearly expressed during a workshop held at CERN in March 2002, discussing possible scenarios how to reach the projected luminosity of LHC in 2010 and how to further increase the luminosity in the Interaction Regions (IR) at the ATLAS and CMS detector in 2016. Even without concrete operational specifications for the specific IR-magnets it has been concluded that employment of Nb₃Sn magnets in the IR regions is mandatory to reach either of the above ambitions. More recently, at the Workshop on Advanced Accelerator Magnets, held in Archamps, France, in March 2003, further study on the expected and possible performance of LHC emphasized again the need for reliably operating high-field Nb₃Sn magnets in the IR regions. In addition to luminosity upgrade scenarios, an energy upgrade of the LHC accelerator as a whole, entering a new collision-energy range above 30 TeV by replacing the 8.34 T NbTi beam-steering dipole magnets by 15-16 T Nb₃Sn dipole magnets, is also being seriously considered.

Apart from LHC upgrade, Nb₃Sn technology is also considered for the final focusing quadrupole magnets of linear colliders. For instance, in the case of the first Interaction Region of TESLA, the machine optics requires that the final focusing quadrupole magnets be as close as possible from the interaction point. As a result, they end up inside the detector magnet and must sustain its background field. The TESLA Technical Design Report calls for four 56-mm-aperture, 250 T/m quadrupole magnets that must operate in a 4-T solenoidal background field. Such magnets can only be made from Nb₃Sn. Most technological developments carried out within the NED JRA will be directly applicable to them and will help assessing their feasibility.

In summary, the NED JRA will provide the benefits to European Research Infrastructures:

- It will allow to improve the luminosity of the LHC well beyond the present specifications. On a longer term, it might allow one to increase its energy.
- Beyond the LHC upgrades, the developments carried out within the framework of the NED JRA will significantly contribute to improving, supplying and controlling the technology for high-field accelerator magnets, and will complement the vigorous programs presently conducted in the USA.

8. R4.4.2 Outline of the exploitation of results

Superconducting wire development and production

A key feature of the NED JRA is the ambitious superconducting wire and cable development program to push the Nb₃Sn technology well beyond what is presently available in Europe. The development and production of the wire unit lengths will be subcontracted to industrial manufacturers who have the know-how and infrastructure to carry out this work. It will

enable European manufacturers to bridge the gap with their American counterparts and, possibly, take the lead in the competitive market of high performance Nb₃Sn wires. It will help them to improve the quality, yield and cost of their commercial productions, in particular, for the ITER project, which will be running in parallel. It will help also the R&D on Nb₃Sn wires for high-field NMR applications.

Developments on conductor insulation

The development of more reliable insulation schemes could allow higher overall current densities in magnet coils, thereby enhancing the performances of high-field NMR magnet systems.

Whenever appropriate, the outcome of the work will be made available to industrial partners, thereby helping the dissemination of Nb_3Sn technology, inside and outside accelerator magnet applications.

8. R4.4.3 Monitoring success and impact of the activity

Wire Development

The bore field of a dipole magnet model is directly proportional to the overall current density in the conductor.

The Nb₃Sn technology has marked outstanding improvements over the last 20 years, with a fourfold increase of the critical current density (see Figure 3.3). The highest achievements, mostly by US companies, set the benchmark to which the result of the superconducting wire development can be compared throughout the development program.

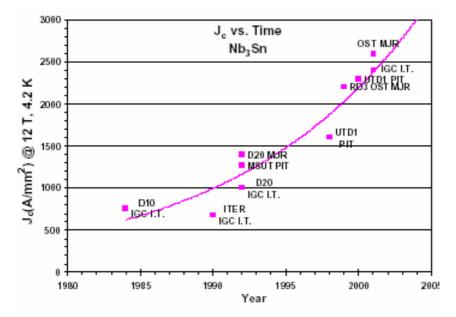


Figure 8.R4.4.3: Improvements of J_C (12 T, 4.2 K) of Nb₃Sn wires since 1984 (from Fermilab Report TD-01-01, 14 Feb 2001).

8. R4.5 Subcontracts

Cryostat for Heat-Transfer Measurements (TSQP, Task 2.2)

The subcontract to manufacture the cryostat that will house the experiment on heat transfer through Nb_3Sn conductor insulation will be placed with a manufacturer well experienced in cryogenic scientific equipment design, construction and commissioning

Wire Development and Manufacturing (CD, Task 3.4)

Subcontracts will be placed with manufacturers already active in the field of superconducting multifilamentarty composite wires. The wire structure depends on the chosen technology. A common approach of all the technologies consists in the assembly of a billet made of copper, tin and niobium rods or tubes. The billets are cylindrical and have diameters in the 80-to-100-mm range. They are extruded and subsequently drawn-down to final size in specialized machines. Only specialized manufacturers have the know-how and infrastructures to perform these operations and produce long unit lengths superconducting wires and cables, while national laboratories have the competences and facilities to characterize the performances of the final products.

All European manufacturers are presently engaged in the construction of LHC and have made large capital and human investments to reach the high degree of quality required for this production. The proposed JRA will give them an opportunity to extend their domain of expertise beyond the NbTi technology and to take a major step into Nb₃Sn technology. This will be profitable not only for accelerator magnet applications but also for ITER and high-field NMR applications as well.

Since the conductor development program is regarded as an iterative process the subcontracts per company will be split up in time. Monitoring of quality and progress will be carried out by several participants (task 3.4) whose findings are fed back to the task coordinator (CERN) on a regular basis. Together with the results from extensive wire characterisations this information will guide the timing and the stepwise extension of the subcontracts.

9. Detailed implementation plan for the first 18 months period

9. N1 Activity N1: Electron Linear Accelerator Network (*ELAN*)

Task Name, Milestone (MS), Interm.Deliverable (ID)	Т3	T4	T1 T2	2 T3 T4	T1 T2	T3 1
Review of Network activities				- -		
MS: annual meetings				•		
D: Annual report					•	
De sign Study		(—		,		
Preparation of Design Study			հ			
MS+ID: Design Study Proposal			₩1			
Follow up of Design Study						
WP 1 Normal Conducting Linac Technology (LTECNC)			-			7
CTF3 Review						
Monitoring of WP1 activities						
MS: Workshop				•_		
ID: Proceedings					•	
Review of available data				D 1		
Identification of topics				₽		
Identification of synergy with WP2				-		
ID: Document				↓		
Identification of benchmarks					h	
ID: Work plan					¥ –	
Proposal for complementary JRAs					1	հ
ID: Document						Ň
Review benchmarks						
Review photo injector						
WP 2 : Superconducting Linac Technology (LTECSC)			-			
Coordination of R&D						
MS: Workshop					h	
ID: Proceedings					•	
Courses on SC technology						
Data base for RF						
Cavity reliability roadmap						
Suface treatment / Klystron						
Evaluation of quality control						
Evaluation of cleaning methods						
Evaluation standard methods vs. alternatives					1	
MS: Workshop				•	•	
Evaluation of thin film methods					1	I
Alternative cavity feasibility study						1
Comparison of pow er sources					1	

ANNEX I - DE	SCRI	PTI			E - Contract number: RII3-CT-2003-5063
Task Name, Milestone (MS), Interm.Deliverable (ID)	TO	TA	2004	2005 T4 T1 T2 T3 T	F 4
WP 3 : Beam Dynamics (BDYN)	- 13	14	11 12 13		
Review status of beam studies	_			•	
MS: Preliminary identification of highest priorities	_		A Mee	eting	
Identify important remaining studies	_		*		
Identify required instrumentation	_		-		
Identify possible benchmarks	_				
Workshop	_				
D: Report	_				
Coordinate and prioritise studies	_			*	
MS: Workshop on emittance grow th	_			•	
Prepare repository	_		h	Ť	
ID: Repository site established	_		•		
Identify required interfaces	_		T T		
Collect codes	_		•		
D: Repository functional	_				
Define interfaces	_			*	
WP 4 : Instrumentation and Diagnostics (INSTR)	_				
Creation of web site	_			•	
MS: Web site	_				
D: Report	_		2		
Implemention of data base	_		•		
MS: Data base	_				
D: Document	_			*	
Data base of performance	_			h	
MS: Workshop	_			•	
D: Reports	_				
Coordination of R&D goals	_				
Promote collaboration	_				
Coordinate prototype R&D	_				
Cross checks and benchmarks	_				
WP 5 Advanced and Novel Accelerator Development (ANAD)	_				
Ultra short pulse injectors	_				
MS: Workshop on injectors	_			•	
Plasma w ave studies					
ldentify diagnostics for plasma wave acc.					
MS: Workshop on diagnostics				•	
Electron beam focusing					
MS: Workshop on beam focusing				•	
ID: Proceedings				•	
Prepare integrated experiment					
Prospective ideas for DS					
MS: Workshop on design study				◆	
ID: Proceedings				•	

9. N2 Activity N2: Beams in Europe for Neutrino Experiments (*BENE*)

ame, Milestone (MS), Interm.Deliverable (ID)	2004 2005 2006 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2	
Establish the Network framework		
MS: Kick-off meeting: Planning and work organization	▲N3 Milestone	
Establish connexion betw een Labs and universities in all Work Packages. Organize w ork in all WP.		
Establish priorities in all WP, create BENE Website		
Assess state of the art of technologies, prepare Design Studies and R&D proposals		
BENE Spring Meeting		
BENE Summer Meeting		
MS: Annual CARE/BENE meeting	BENE Milestone	
ID: BENE Annual Report	Annual BENE Report	t (ID
BENE Spring Meeting	● ●	
Prepare short BENE Interim Report for NuFact05		
BENE Summer Meeting		
Organization of NuFact05 International Workshop		
MS: NUFact05 International Workshop	♦ BENE Milesto	ne
WP1: Physics	• • • • • • • • • • • • • • • • • • •	
Development of the WP Web Site		
WP Spring Meeting	•	
WP Summer Meeting		
WP Fall Meeting	◆	
Plan strategy of unambiguous measurement of all oscillation parameters		
MS: Topical Physics Workshop (proceedings within months)	WP Milestone	
Assess potentials of different beam baseline detector configurations		
WP Spring Meeting	◆	
WPSummer Meeting	◆	
MS: WP Interim Report for NuFact05	♦ WP Milestone	
WP2: Driver	••••••	
Development of the WP Web Site		
WP Spring Meeting	•	
WPSummer Meeting	•	
WP Fall Meeting	▲	
Define criteria of SPL vs RCS. Perform comparison. Identify R&D plans beyond HIPPI.		
WP Spring Meeting	♦	
WP Summer Meeting	◆	
MS: WP Interim Report for NuFact05	WP Milestone	

		2004			2005	2006
ne, Milestone (MS), Interm.Deliverable (ID)	T4	T1	T2 T3	T4	T1 T2 T3 T4	T1 T2 T3
WP3: Target						
Development of the WP Web Site						
WP Spring Meeting		•				
WP Summer Meeting	_		+			
WP Fall Meeting				•		
Review present status of high pow er target studies.						
MS: WP Spring Meeting hosting Int. Workshop on Targets & Collectors (proceedings within months)					WP Milesto	ne
Assess merits of different target schemes						
WP Summer Meeting					+	
MS: WP Interim Report for NuFact05					🔶 WP Mil	lestone
WP4: Collectors		├ ─				
Development of the WP Web Site						
WP Spring Meeting		+				
WP Summer Meeting			•			
WP Fall Meeting				•		
Evaluate progress: pow er supplies, irradiation, mechanical and thermal stresses						
MS: WP Spring Meeting hosting Int. Workshop on Targets & Collectors (proceedings within months)					WP Milesto	ne
Assess merits of different collector schemes						
WP Summer Meeting					+	
MS: WP Interim Report for NuFact05					🔶 WP Mil	estone
WP5: Novel Neutrino Beams		┝──				
Development of the WP Web Sites for the three areas of interest of the WP						
Review of existing designs for NuFact (both front & back end) and Betabeams.						
Define, implement and perfect dissemination mechanisms						
WP Spring Meeting		+				
WP Summer Meeting			•			
MS: WP Spring Meeting hosting Betabeam Workshop (proceedings within months)				•	WP Milestone	
WP Spring Meeting					+	
WP Summer Meeting					•	
MS: WP Interim Report for NuFact05					🖕 WP Mil	estone

9. N3 Activity N3: High-Energy High-Intensity Hadron Beams (*HEHIHB*)

k Name, Milestone (MS), Interm.Deliverable (ID)	2004 T4 T1 T2 T	2005	2006 2 T3 T4 T1 T	
Establish the Network framework			2 13 14 11	12 13
MS: Kick-off meeting: Planning and work organization	●N4 Milest	one		
Establish connexion between Labs and universities in all Work Packages (AMT, ABI and APD)	- Ť			
Organization of all Work Packages (AMT, ABI and APD)	- i			
Establish priorities in all WP				
Assess state-of-the-art Technologies				
MS: Annual HEHIHB meeting		+ HEHI	HB Milestone	
ID: HEHIHB Annual Report		👗 Annı	ual HEHIHB Re	port
WP1 Accelerator Magnet Technology (AMT)	─↓ ↓───	-	-	
Development of the AMT Web Site			-	
Development of Web based database for SC Cables and Magnets				
MS: Specific meeting on database			AMT MS	
ID: First report on Web based database			🚡 AMT ID	
Establish a catolog of numerical codes for AMT1 and AMT4				
Comparison of codes for design, stability and protection studies for AMT1 and AMT4				
Identification of main limiting issue				
Proposal for integration of European program in the international framew ork (AMT1, AMT4)		H		
MS: First A MT topical w orkshop on superconductors				
ID: Report on AM T organization and conductor development roadmap		🔿 AMT	ID	
Comparative studies of alternatives using low field magnets for AMT2 and AMT3				
Identification of general issues relevant for magnet design for AMT5				
MS: Reporting of AMT activities at the first general CARE meeting		AMT I	MS	
ID: Proceedings of the 1st AMT topical workshop		S AN	/TTID	
Review of developments in the US and for ITER on conductors and magnet technology relevant for AMT1 and AMT2				
Comparative studies of alternatives using low field magnets for AMT2 and AMT3				
Determination of scaling law for magnet and cryogenic cost for AMT5		ľ.	L	
MS: Preliminary report on scaling law for magnet and cryogenic cost for AMT5			AMT MS	

Name, Milestone (MS), Interm.Deliverable (ID)	-	2004 4 T1 T2 T2	2005 T4 T1 T2 T3 T4	2006
WP2 Accelerator Beam Instrumentation (ABI)		4 11 12 13	14 11 12 13 12	+ 11 12 13
Establishing the list of priorities relevant for ABI and selection of 1st topic			Ť	
Study of the 1st topic after identification of its main limiting issue				
MS: First ABI topical w orkshop		↓ +	ABI MS	
ID: Proceedings of the 1st ABI topical workshop			ABIID	
MS: Reporting of ABI activities at the first general CARE meeting			ABI MS	
Study of the second topic after identification of its limiting issues				
MS: Second topical w orkshop			🔶 ABI MS	
ID: Proceedings of the 2nd topical workshop			ABI	IĎ
WP3 Accelerator Physics and Synchrotron Design (APD)		·		
Development of the APD Web Site with structured information flow				
Establish a catolog of existing simulation codes for APD1-APD7			ק	
Comparison of alternative synchrotron and IR designs			_	
Determination of beam dynamics studies and experiments to validate different options (APD1-2, APD6-7)			-	
Studies relevant for APD3, APD4 and APD5			-	
MS: General A PD meeting			MS	
Identification of beam intensity limitation and determination of roadmap for Synchrotron and ID designs			B <u>L</u> ∣	
MS: Topical APD w orks hop on Optics/Collective effets		-	APD MS	
ID: Interim report on APD activities and reporting at the general CARE meeting			APD ID	
ID: Proceedings of the first APD topical workshop			APD ID	
MS: meeting on simulation code benchmarking and web based code repository			APD MS	
MS: General APD meeting			APD I	MS

9. R1 Activity R1: Superconducting Radio Frequency (SRF)

		2004 2005
Task Name	Milestones, deliverables	D J F M A M J J A S O N D J F M A M J J A S O N
WP 2 Improved standard cavity fabrication		
Reliability Analys is		·
Review of data bank: cavity fabrication		
Review of data bank :cavity treatment		
Review of data bank: cavity VT performance		
Review of data bank: string assembly		
Review of data bank: string performance		
Establish correlations		
MS Final report on reliability issue	Final Report	24/09
Improved component de sign		
Documentation retrieving		
Access and study of Jlab, DESY, LLAN, KEK experience and		
solution on components		
MS Summary report on the status of the art on ancillaries	Intermediate Report	02/07
on the experience of various laboratories involved in SCRF		
Sealing material and shape design		→ — ———
Flange preliminary des ign		
Material and geometric compatibility		
Final assembly design		
End plate preliminary design		
MS Report about new design for components	Intermediate Report	23/12
Stiffness optimization		→ — — — — — — — — — — — — — — — — — — —
Manufacturing procedure analysis		
Final assembly design		
Other ancillaries design		
MS Final Report for new components	Final report	05/07
Review with vendors of criticality in welding procedures		
Review of available parameters on vendor welding machine		
Definition of prototype requirements for tests		
Welding test on specimens		
Analysis of the results		

		2004 2005
Task Name	Milestones, deliverables	D J F M A M J J A S O N D J F M A M J J A S O N
EB welding		
De sign tooling		÷
Tools for flange welding		
Tools for pipe w elding		
Tools for stiffening rings		
Tools for single cell w elding		
Tools for 9-cells		
MS Tools design finished	De sign finis hed	15/12
Tools production		
Tools for flange w elding		
Tools for pipe w elding		
Tools for stiffening rings		
Tools for single cell w elding		
Tools for 9-cells		
MS Tools fabrication finished	Prototypes fabricated	11/03
Welding		÷
Commissioning w elding machine		
Test w elding		
MS start production welding	Start of welding components	11/03
Single cell welding		

		2004 2005
Task Name	Milestones, deliverables	
WP3 Seamless cavity production		
Seam less by spinning		
De sign spinning machine		· · · · · · · · · · · · · · · · · · ·
Drawings of the matrices		
Drawings of the support system		
MS Design finished	De sign finished	17/09
Construction of spinning machine		
Fabrication of machine parts		
Software for the machine		
Assembly of machine		
Commissioning of the machine		
Seamless by hydroforming		
De sign hydroforming machine		· · · · · · · · · · · · · · · · · · ·
Drawings of the matrices		
Drawings of the support system		
MS Design finished	De sign finished	17/09
Construction of hydroforming machine		•
Hydraulic for machine		
Software for the machine		
Machine fabrication		
Commissioning of the machine		
MS Commissioning finished	Hydroforming machine ready	01/07
Construction of tube necking machine		· · · · · · · · · · · · · · · · · · ·
Draw ings of the support system and turning mechanism		
Drawings of the necking mechanism		
Construction of the tube necking machine		
Software for the tube necking machine		
MS Necking machine ready	Necking machine ready	24/02
Development of seamless tubes for 9-cell cavities		
Fabrication and inspection of bulk Nb test tubes		
Fabrication and inspection of bimetallic NbCu test tubes		
MS Seamless tubes ready	Prototypes of tubes finished	30/06

Task Name	Milestones, deliverables	2004 2005 D J F M M J J A S O N D J F M A S O N D J F M A J J A S O N
WP4 Thin film cavity production		
Thin film cavity coating		· · · · · · · · · · · · · · · · · · ·
Linear-arc cathode coating		· · · · · · · · · · · · · · · · · · ·
Modification of a prototype facility for single cells		
Optimization of a triggering system		
MS Prototype ready	Prototype facility ready	30/07
Study of arc current reduction and stabilization		
Optimization of the powering system		
MS Start of coating	Start coating	31/12
Coating of single cells without micro droplet filtering		
Design and construction of a micro droplet filter system		
MS Droplet filter for LA ready	Droplet filter	08/07
Planar-arc cathode coating		• • • • • • • • • • • • • • • • •
Modification of a planar-arc system		
Optimization of the laser triggering system		
MS Prototype ready	Prototype facility ready	03/09
Characterization of samples coated at different conditions		••••••
Characterization of Nb-coated sapphire samples		
Characterization of Nb-coated copper samples		
First investigation of the micro droplet problem		

Task Name	Milestones, deliverables	2004 2005 D J F M A M J J A S O N D J F M A M J J A S O N C
WP5 Surface preparation		
EP on single cells		
EP on samples		· · · · · · · · · · · · · · · · ·
Establishing method of surface characterization (roughness, reflectometry)		
MS Surface characterization fixed	Intermediate Report	28/05
Series of EPw ith samples for surface investigations		
MSMilestone:best EP parameters	Intermediate Report	31/12
Single cell cavities		· · · · · · · · · · · · · · · · · · ·
Order Nb and fabricate 3 cavities		
MS 3 cavities fabricated	Test cavities	31/12
EP chemistry on single cells		· · · · · · · · · · · · · · · · · · ·
Design of EP set-up		
Fabrication of EPset-up		
Commissioning of EPset up		
First operation of EP set-up		
EP on multi-cells		· · · · · · · · · · · · · · · · · · ·
Transfer of parameters from single cell to multi cell equipment		÷
Finish EP setup nine-cells at DESY		
Improved gas cleaning system		
Design for hot water rinsing		
MS Proof-of-Principle experiment hot water rinse	Intermediate Report	09/09
Optimize electrode shape		↓
Develop computer model/ Evaluate softw are		
Design improved electrode		
MS Electrode design fixed	Designreport	14/07
Fix process parameters/ Quality control		÷
Setup chemical lab		
Bath aging		
Bath mixture		
Alternative (salt) mixtures		
MS Process parameters fixed	Intermediate Report	12/01
Laser roughness		
Evaluate existing systems		
Specify laser system		
Oxipolishing as final chemical cleaning		₩ ₩₩₩₩₩₩₩ ₩
Laboratory studies		
Design of OP system		

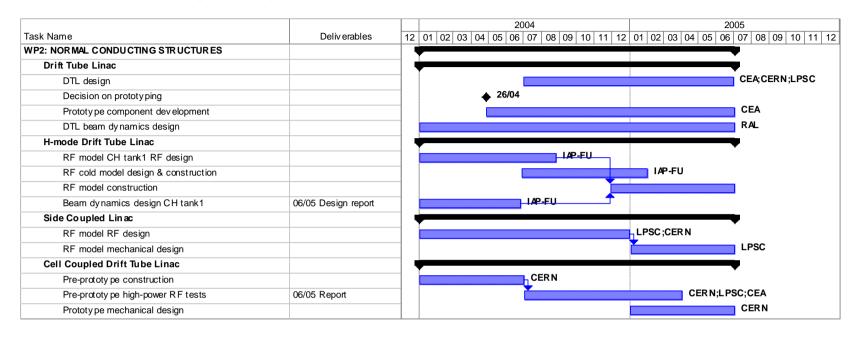
Task Name	Milestones, deliverables	2004 2005 D J F M A M J J A S O N D J F M A M J J A S O N I
Automated EP (AEP)		
Prototype EP installation		
Design installation		
Fabricate/ order components		
As semble EP installation		
MS Installation ready	EP installation	14/09
₽ computer control		• • • • • • • • • • • • • • • • • • •
Design control architecture		
Develop software		
Test of software		
MS Software ready	Software, Report	28/09
Operation of AEP prototype		· · · · · · · · · · · · · · · · · · ·
Correlate surface finish/ conductance		
Determine optimum conductance		
Optimize automated operation		
Dry ice cleaning		
Installation of full system for 1-3 cell cavities		· · · · · · · · · · · · · · · · · · ·
Installation of CO2 piping		
Installation of motion system		
Installation of controlsystem		
Commissioning		
MS Installation finished	Start operation	01/12
Optimization of cleaning parameters		· · · · · · · · · · · · · · · · · · ·
Sample cleaning		
1-cell cavity cleaning		
Fix best cleaning parameters		
MS Cleaning parameters fixed	Intermediate Report	30/06
VT 9-cell cleaning apparatus		
Design 9-cell apparatus VT		
Fabricate 9-cell apparatus		

Task Name	Milestones, deliverables	2004 2005 D J F M A M J J A S O N D J F M A M J J A S O N
WP 6 Materials analysis		
Squid scanning		· · · · · · · · · · · · · · · · · · ·
Produce calibration defects		•••••••
Production of surface defects		
Production of bulk defects		
MS Calibration defects finished	Intermediate Report	12/08
Design components of Squid scanner		· · · · · · · · · · · · · · · · · · ·
Design of the scanning table and support		
Design of the SQUID cooling system		
MS Design Scanner finished	De sign report	30/11
Construction of scanning apparatus		
Fabrication of the SQUID		
Fabrication and purchase of components for SQUID scanner		
Software for the SQUID scanner		
MS construction scanner finished	Intermediate Report	14/07
Flux gate magnetometry		·····
Produce calibration defects		↓
Production of surface defects		
Production of bulk defects		
MS Calibration defects finished	Report, Calibration defects	01/07
Design components of flux gate head		· · · · · · · · · · · · · · · · · · ·
Design electronics		
Design of flux gate head		
Design of operations softw are		
MS Design flux gate head finished	Design report	03/09
Fabrication of flux gate detector		· · · · · · · · · · · · · · · · · · ·
Fabrication of flux gate head		•••••
Fabrication of mechanics		
Implementation of software		
Commissioning of flux gate detector		•••••
Calibration of flux gate detector		
MS Flux gate detector operational	Final report, Start operation	10/06
DC field emission studies of Nb samples		· · · · · · · · · · · · · · · · · · ·
Quality control scans		· · · · · · · · · · · · · · · · · · ·
Modification of Scanning apparatus		
Calibration of Scanning apparatus		
MS Start s canning activity	Start operation	04/06
BCP and HPR samples		
EP and HPR samples		
BCP/EP and DIC samples		
MS First report on BCP/EP and DIC surface	Intermediate Report	10/06

		2004 2005
Task Name	Milestones, deliverables	D J F M A M J J A S O N D J F M A M J J A S O N
WP8 Tuners		
UMItuner		
Develop control electronics		
Mechanical design of tuner		
Study leverage system/motor		▶
Integration of pieco design		
Choice of transducer / actuator		
MS Report on UMI tuner	Design Report	15/04
Magneto-strictive tuner		÷
Complete s pecification		
Conceptional design		
Prototype and performance		
Finalize drive electronics		
Installation and test of tuner		
MS Report on magneto-strictive tuner	Status report	31/12
CEA tuner		
Design piezo tuning system		
Fabrication of prototype		
Installation of driver electronics		
MS CEA tuner ready for experiment	Status Report	25/03
IN2P3 activities		· · · · · · · · · · · · · · · · · · ·
Characterize actuator/piezo sensor		
MS Report on actuator/piezo sensor	Status report	02/07
Test radiation hardness		
MS Report on radiation hardness tests	Intermediate Report	31/12
Integration of piezo and cold tuner		
Cryostat tests		
MS Ready for pulsed RF test	Start operation with pulsed RF	01/07

Task Name	Milastanas deliverables	
WP9 Low level RF	Milestones, deliverables	D J F M A M J J A S O N D J F M A M J J A S O N
_ow level RF		
Operability and technical performance		
Transient detector		
Define requirements		
Electronics design		
Build prototype and evaluate		
Final design of detector		
Installation and commissioning		
Test with beam		
MS Report on transient detector test	Status report	28/01
LLRF Automation		
Dialogue with industrial experts		
Develop full specification		
Implement FMS for subsystems		
Test and evaluation		
Implement improvements		
Evaluation and acceptance by operators		
MS Report on LLRF atomization design	Status report	01/07
Control optimization		· · · · · · · · · · · · · · · · · · ·
Specification of system		
Conceptual design of controller		
Performance simulation		
Implementation in DSP hardw are		
Implementation and tests on TTF		
MS Evaluation of test results	Status report	24/06
Exceptional handling routines	•	······································
Specification		
Design of exceptional handler		
Implementation and test on TTF		
MS Report on exceptional handler operation	Status report	26/11

ask Name	Milestones, deliverables	2004 D J F M A M J J A S O N D J F M A M J J A S O N
LLRF cost and reliability study		
Cost and reliability study		· · · · · · · · · · · · · · · · · · ·
Identify cost drivers of present LLRF		
Develop cost reduction ideas		
Build prototypes and evaluate		
Final design of LLRF system		
MS Complete design of LLRFsystem for reduced cost	Status report	24/06
Radiation damage study		
Identify critical electronics is sues		
Evaluate radiation		
Develop tests for components		
Procure and assemble test set up		
Data acquisition from radiation tests		
Analyze results and develop countermeasures		
Implement countermeasures and verify		
MS Report on radiation damage studies	Status report	24/06
Hardware		
Multichannel downconvertor		
Study and compare technologies		
Select optimum PCB design		
Build prototype and evaluate		
Finalize multichannel dow nconverter		
Determine characteristics		
Third generation RF control		
Integrate system generator with VHDL		
Complete s pecification		
Demonstrate simulator		
Final design of RF electronic board		
Evaluate performance		
Stable frequency distribution		•
Complete s pecification		
Conceptional design of frequency		
Build prototype and evaluate		
Final design		
Procurement and assembly of subsystems		
Installation and commissioning		
Performance test with beam		
MS Report on new LLRF hardware components	Status report	24/06


			2004 2005	
Task Name	Milestones, deliverables	D	J F M A M J J A S O N D J F M A M J J A S O) N D
Software		- Y		
Data management development		ÌÝ		
Specification				
Conceptional design with DOOCS				
Prototype				
User evaluation				
Finalize design				
Implementation in TTF				
MS Report on data management developments	Status report		29/04	
RF gun control		- ↓		
Write specification				
Design of controller				
Procurement and as sembly				
Installation and test				
MS Report on RF gun control tests	Status report		29/04	

Task Name	Milestones, deliverables	D J F M A M J J A S O N D J F M A M J J A S O N
WP10 Cryostat integration tests		
Move CRYHOLAB, commissioning		07/07
MS Report on intended integration tests in CRYHOLAB	Schedule of integration tests	
Integration tests in cryostat		
MS First experiment in CRYHOLAB	Start operation	01/06
Test 1		
WP11 Beam diagnostics		
Beam position monitors		↓
MS Present BPM installed in TTF	Start of measurements	
Cryogenic measurements on BPM		
Beam tests of BPM on TTF		
Design of BPM cavity		
MS Design of BPM cavity ready	De sign re port	01/10
Fabrication of BPM cavity		
MS BPM cavity ready	BPM cavity	01/04
Development of new hybrid & electronics		
Design of digital signal processing		
Beam emittance monitors		¥
Slit with simulations		
Slit design		
Optics simulation		
Optics appropriation		
System assembly and tests		
Mechanical assembly at TTF		
Optical assembly at TTF		
Integration of controls into TTF		

9. R2 Activity R2: Charge production with Photo-Injectors (*PHIN*)

ask Name	Milestones (MS), Deliverables (D)	12	2004 01 02 03 04 05	06 07	00 00 1	0 11 1	2005	02 04 0		
WP2 Charge Production		12		06 07	06 09 1		2 01 02	03 04 0	00 07 0	09 10 11
High efficiency photocathode comparison		-								
Tighternolency photocalitode comparison	D: Report on photocathode studies	-		(≩) 30/0	06					
Photosothado proporation aquipment construction	MS: Photocathode equipment test	-							▲ 29/0	6
Photocathode preparation equipment construction	No. Photocathode equipment lest	-							20/0	•
High charge photocathode development for SC cavity		-								
100 MeV monoenergetic beam R&D		_								
WP3 Laser		_								
Laser System		_								
High power oscillator construction		_								
	D: Report on os cillator design		4	31/05						
Design and realisation amplifier										
	D: Report on Laser oscillator test results					•	20/12			
Test amplifier										
	D: Report on Laser amplifier								30/05	
UV Harmonic generator devel.										
	D: Report on UV crystal comparison								20/06	
Feedback and test										
Pulse shaping system			·				-		_	
Simulation and design										
Phase mask acquisition and test										
Dazzler acquisition and test			1							
	D: Report on pulse shaper comparison	1							30/0	6
WP4 GUN										
SC RF gun		1	÷							
Technology development		1					h			
SC RF gun design		1								
SC RF gun realisation		1								
3 GHz RF gun		1								
3 GHz RF gun design	D: Report on 3 GHz RF gun design	1								
3 GHz RF gun construction		1								
Spectrometer for e- beam		1								
1-50 MeV Spectrometer design		1								
1-50 MeV Spectrometer construction		1								

9. R3 Activity R3: High Intensity Pulsed Proton Injector (*HIPPI*)

									04										20				
Task Name	Deliverables	12	01	02	03	04	05	06	07	08	09	10	11	12	01	02 03	04	05	06	07	08 0	9 10	11
WP3: SUPERCONDUCTING STRUCTURES			Y																				
ELLIPTICAL CAVITIES			Ý-											-									
Cavity A v ertical tests	12/04 Report														INF	N-MI;C	ΈA						
Mechanical design of tuner, leverage system, motor	12/04 Design report														INF	N-MI							
Integration of piezo design															INF	N-MI							
Tuner construction																				IN	FN-MI		
Design cavity B							I								CE	4							
Construction cavity B																				CE	A		
Power coupler design & engineering																				CE	A		
RF source order & preparation																				CE	A		
SPOKE CAVITIES			┿━											-									
Test stand preparation at FZJ											h												
Evaluation of 700 MHz resonator in vertical cryostat	03/05: Evaluation report																	FΖ、	J				
Evaluation of 352 MHz 2-gap res. in vertical cryostat															IN2	P3-Ors	say						
Design of coupler prototype																		LIN.	2P3-	Orsa	ay		
Test of coupler prototy pe																				IN	2P3-0	rsay	
Design of 352 MHz multi-gap resonator	05/05 Design report																	<mark>ի</mark> FZ	ZJ				
Design of coupler and tuner																		HIP.	NO				
Engineering of resonator, coupler and tuner																				FZ	J;IN2	P3-Ors	say
CH RESONATOR			÷											-									
Study of tuning system	06/05 Conceptual report																			IA	P-FU		

								200											005			
Task Name	Deliverables	12	01	02	03	04	05	06 0)7 (08	9 1	0 11	12	01	02	03 0	04 05	5 06	07	08 0	09 1	0 11
WP4: CHOPPING			Y-																			
CHOPPER STRUCTURE A			Ý-																			
Pre-prototy pe construction	03/05 report							<u> </u>	ER	N												
Pre-Prototy pe testing	06/05 Design report											C	ERN	-								
Driver construction, testing														h								
Full scale prototype design														Ě					CI	ERN		
CHOPPER LINE		1	÷															_				
Dump design	06/05 Report								CER	N												
Dump construction														Ļ					CI	ER N;C	EA;L	.PSC
CHOPPER STRUCTURE B		I	-																			
Pre-prototy pe design and test	06/05 Report																		R	AL.		
Prototy pe design																			R	AL.		
WP5: BEAM DYNAMICS			Ý-											+				_				
Code development														+					V.			
Preparatio, 3D space charge routines dev ., testing														Ļ					R	AL		
LORASR development																			IA	P-FU		
Transport in 3D map implementation																			C	EA		
Improvement, modelling high current																			G	SI		
Code preparation for 3 MeV test stand																			C	ERN		
Codes preparation for SC linacs																			F2	ZJ		
Experiment at UNILAC preparation, simulations																			G	SI		
Diagnostics and collimation			÷-															_				
Profile measurement prototype design, construction														-		GSI						
Profile measurement testing															Ì				G	SI		
Non-interceptive bunch measurement design														-					G	SI		
Halo meas. device design, construction														1					CI	ERN		
Beam profile monitor design																			FZ	ZJ		
Collimators design																			C	ERN		

9. R4 Activity R4: Next European Dipole (*NED*)

Task name	Milestone (MS), Deliverable (D)		004 01 02 03 04 05 0	6 07 08 09 10 11	2005 12 01 02 03 04 05	06 07 08 09 10 11 12
WP1 Management and Communication (M&C)		•				
Activity Coordination						
Meetings		1 🕈				
Steering Committee Meetings		1 🖿				
External Scientific Advisory Committee Meetings						
WP2 Thermal Studies and Quench Protection (TSQP)		🔶				
Work Package Coordination		1 🖿				
Heat Transfer Measurements		1 🔶				
Drafting of Test Facility Specifications			h			
Cry ostat Design and Fabrication		1 🖿				
Cry ogenic Module Design and Fabrication						
Facility Integration and Qualification						
	MS: Facility Commissioning				4 01/0	4
Measurements and Analyses						
Quench Protection Computation		1 📩				
	D: Interim Report on Quench Performance	1 -			30/12	
	D: Final Report on Quench Protection					30/06
VP3 Conductor Development (CD)		1 ⊭				
Work Package Coordination						
Cable Definition from Field Computations of a 15 T Dipole Magnet						
	Report on 15T Dipole Magnet Design				30/12	
Specifications' Drafting				_ h		
	Report on Specifications for Wire and Cable			30/06		
Wire Development						
	MS: First Results on Wire Development					30/06
Wire Characterization		1 🖢				
Definition of Measuring Procedures						
VP4 Insulation Development and Implementation (IDI)		1 🕊				
Work Package Coordination						
Specifications' Drafting		14		_ h		
	Report on Specifications for Conductor Insulation			30/06		
Implementation Study of Conventional Solution						
Litterature Survey						
	MS: Development of the Test Plan			30/07		
Tooling Preparation						
Compoment Supply						
Iterative Tests						
Implementation Study of Innovative Solution				-		_
Tape Weaving Trial						
Pre-impregnation and Wrapping Bench				*		h
	Report on Innovative Insulation					30/06

10 Financial information for the duration of the detailed implementation plan

				Fina	ncial information – "Rep	porting per	iod 1 + firs	st six mont	hs of Repo	rting perio	d 2"			
		Cost mo	del used					and EC con						
	0							Consortiu		Other speci	fic activities		Total	
Partici- pant n°	Organi- sation short name	For transnat ional Access	For any other activities	reque	ated eligible costs and ested EC contribution months of the project)	RTD activities (1)	Demonstr ation activities (2)	m Manageme nt activities (3)	king (4)	Transnatio nal access (5)	Connectivi ty (6)	Other including Specific Service Activities for CND (7)	(8)= (1)+(2)+(3) +(4)+(5)+(6)+(7)	Total receipts
					Direct costs (a)	1 815 475		253 350	27 400				2 096 225	
				Eligible	of which subcontracting	0		0	0				0	
1	CEA		FC	costs	Indirect costs (b)	1 079 255		194 250	0				1 273 505	
					Total eligible costs (a)+(b)	2 894 730		447 600	27 400				3 369 730	
				Requested	I EC contribution	656 800		187 260	27 400				871 460	
					Direct costs (a)	0			1 583				1 583	
				Eligible	of which subcontracting	0			0				0	
2	UCLN		AC	costs	Indirect costs (b)	0			317				317	
					Total eligible costs (a)+(b)	0			1 900				1 900	
				Requested	I EC contribution	0			1 900				1 900	
					Direct costs (a)	2 420 008			43 250				2 463 258	
				Eligible	of which subcontracting	0			0				0	
3	CNRS		FCF	costs	Indirect costs (b)	484 002			8 650				492 652	
					Total eligible costs (a)+(b)	2 904 010			51 900				2 955 910	
				Requested	EC contribution	1 056 600			51 900				1 108 500	
					Direct costs (a)	522 000			8 100				530 100	
				Eligible	of which subcontracting	0			0				0	
4	GSI		FC		Indirect costs (b)	68 000			0				68 000	
					Total eligible costs (a)+(b)	590 000			8 100				598 100	
				Requested	EC contribution	170 000			8 100				178 100	
	т.	T A I		Eligible co	sts									
	10	TAL			EC contribution									

				Finar	ncial information – "Rep	porting per								
		Cost mo	del used				Costs	and EC con	tribution pe	r type of ac	tivities			
								Consortiu		Other speci	fic activities		Total	
Partici- pant n°	Organi- sation short name	For transnat ional Access	For any other activities	reque (first 18	ated eligible costs and ested EC contribution months of the project)	RTD activities (1)	Demonstr ation activities (2)	m Manageme nt activities (3)	coordinati	Transnatio nal access (5)	Connectivi ty (6)	Other including Specific Service Activities for CND (7)	(8)= (1)+(2)+(3) +(4)+(5)+(6)+(7)	Total receipts
					Direct costs (a)	291667			0			<u>\</u> -7	291667	
					of which subcontracting	0			0				0	
5	IAP-FU		AC		Indirect costs (b)	58333			0				58333	
					Total eligible costs (a)+(b)	350000			0				350 000	
					EC contribution	145000			0				145 000	
					Direct costs (a)	675 933			58 250				734 183	
				Eligible	of which subcontracting	145 000			0				145 000	
6	DESY		AC		Indirect costs (b)	106 187			11 650				117 837	
					Total eligible costs (a)+(b)	782 120			69 900				852 020	
				Requested	EC contribution	782 120			69 900				852 020	
					Direct costs (a)	415 000			11 900				426 900	
				Eligible	of which subcontracting	0			0				0	
7	FZJ		FC	costs	Indirect costs (b)	248 000			0				248 000	
					Total eligible costs (a)+(b)	663 000			11 900				674 900	
				Requested	I EC contribution	154 000			11 900				165 900	
					Direct costs (a)	0			2 583				2 583	
				Eligible	of which subcontracting	0			0				0	
8	TUM		FC		Indirect costs (b)	0			517				517	
					Total eligible costs (a)+(b)	0			3 100				3 100	
				Requested	EC contribution	0			3 100				3 100	
	то	TAL		Eligible cos	sts									
	10	TAL		Requested	EC contribution			1						

				Finar	ncial information – "Re	porting per	iod 1 + firs	st six mont	hs of Repo	rting perio	d 2"		
		Cost mo	del used				Costs	and EC con	tribution pe	r type of act	tivities		
								Consortiu		Other speci	fic activities	Total	
Partici- pant n°	Organi- sation short name	For transnat ional Access	For any other activities	reque (first 18	ted eligible costs and sted EC contribution months of the project)	RTD activities (1)	Demonstr ation activities (2)	m Manageme nt activities (3)	Coordinati on/Networ king (4)	Transnatio nal access (5)	Connectivi ty (6)	(8)= (1)+(2)+(3) +(4)+(5)+(6)+(7)	Total receipts
					Direct costs (a)	170833			5 833			 176 666	
				Eligible	of which subcontracting	0			0			0	
9	FZR		AC		Indirect costs (b)	34167			1 167			35 334	
					Total eligible costs (a)+(b)	205000			7 000			212 000	
				Requested	EC contribution	190 000			7 000			197 000	
				•	Direct costs (a)	865 400			52 417			917 817	
				Eligible	of which subcontracting	0			0			0	
10	INFN		AC	costs	Indirect costs (b)	173 080			10 483			183 563	
					Total eligible costs (a)+(b)	1 038 480			62 900			1 101 380	
				Requested	EC contribution	977 480			62 900			1 040 380	
					Direct costs (a)	153 000			5 750			158 750	
				Eligible	of which subcontracting	0			0			0	
11	TEU		FC	costs	Indirect costs (b)	142 000			0			142 000	
					Total eligible costs (a)+(b)	295 000			5 750			300 750	
				Requested	EC contribution	143 000			5 750			148 750	
					Direct costs (a)	109 633			2 500			112 133	
				Eligible	of which subcontracting	0			0			0	
12	TUL		AC		Indirect costs (b)	21 927			500			22 427	
					Total eligible costs (a)+(b)	131 560			3 000			134 560	
				Requested	EC contribution	131 560			3 000			134 560	
	то	TAL		Eligible cos	sts								
	10	TAL		Requested	EC contribution	1		1					

				Finar	ncial information – "Rep	porting per								
		Cost mo	del used				Costs	and EC con	tribution pe	r type of act	tivities			
								Consortiu		Other speci	fic activities		Total	
Partici- pant n°	Organi- sation short name	For transnat ional Access	For any other activities	reque (first 18	ated eligible costs and ested EC contribution months of the project)	RTD activities (1)	Demonstr ation activities (2)	m Manageme nt activities (3)	Coordinati on/Networ king (4)	Transnatio nal access (5)	Connectivi ty (6)	Other including Specific Service Activities for CND (7)	(8)= (1)+(2)+(3) +(4)+(5)+(6)+(7)	Total receipts
					Direct costs (a)	166 667			2 500			<u>\</u> -/	169 167	
					of which subcontracting	0			0				0	
13	IPJ		AC		Indirect costs (b)	33 333			500				33 833	
					Total eligible costs (a)+(b)	200 000			3 000				203 000	
					EC contribution	122 200			3 000				125 200	
					Direct costs (a)	160 333			2 500				162 833	
				Eligible	of which subcontracting	0			0				0	
14	WUT- ISE		AC		Indirect costs (b)	32 067			500				32 567	
	195				Total eligible costs (a)+(b)	192 400			3 000				195 400	
				Requested	EC contribution	192 400			3 000				195 400	
					Direct costs (a)	51 333			1 250				52 583	
				Eligible	of which subcontracting	48 000			0				48 000	
15	WUT		AC	costs	Indirect costs (b)	667			250				917	
					Total eligible costs (a)+(b)	52 000			1 500				53 500	
				Requested	I EC contribution	52 000			1 500				53 500	
					Direct costs (a)	0			12 750				12 750	
				Eligible	of which subcontracting	0			0				0	
16	CSIC		FC		Indirect costs (b)	0			2 550				2 550	
					Total eligible costs (a)+(b)	0			15 300				15 300	
				Requested	I EC contribution	0			15 300				15 300	
	то	TAL		Eligible cos	sts									
	10	TAL		Requested	EC contribution									

		Cost mo	del used				Costs	and EC con	tribution pe	er type of act	tivities		
								Consortiu		Other speci	fic activities	Total	
Partici- pant n°	Organi- sation short name	For transnat ional Access	For any other activities	reque	ted eligible costs and sted EC contribution months of the project)	RTD activities (1)	Demonstr ation activities (2)	m Managama	Coordinati on/Networ king (4)	Transnatio nal access (5)	Connectivi ty (6)	(8)= (1)+(2)+(3) +(4)+(5)+(6)+(7)	Total receipts
					Direct costs (a)	1 476 667			88 333			 1 565 000	
				Eligible	of which subcontracting	400 000			0			400 000	
17	CERN		AC	costs	Indirect costs (b)	215 333			17 667			233 000	
					Total eligible costs (a)+(b)	1 692 000			106 000			1 798 000	
				Requested	EC contribution	1 320 000			106 000			1 426 000	
					Direct costs (a)	0			23 250			23 250	
				Eligible	of which subcontracting	0			0			0	
18	UNI-GE		AC	costs	Indirect costs (b)	0			4 650			4 650	
					Total eligible costs (a)+(b)	0			27 900			27 900	
				Requested	EC contribution	0			(27 900)*			(27 900)*	
					Direct costs (a)	170 000			17 000			187 000	
				Eligible	of which subcontracting	0			0			0	
19	PSI		FC		Indirect costs (b)	10 000			0			10 000	
					Total eligible costs (a)+(b)	180 000			17 000			197 000	
				Requested	EC contribution	(180 000)*			(17 000)*			(197 000)*	
					Direct costs (a)	757 000			25 750			782 750	
				Eligible	of which subcontracting	0			0			0	
20	CCLRC		FC		Indirect costs (b)	731 000			0			731 000	
					Total eligible costs (a)+(b)				25 750			 1 513 750	
				Requested	EC contribution	253 000			25 750			278 750	
	то	TAL		Eligible cos	sts								
	10	TAL			EC contribution								

				Fina	ncial information – "Rep	porting per	iod 1 + firs	st six mont	ns of Repo	rting perio	od 2"			
		Cost mo	del used			Costs and EC contribution per type of activities								
Partici- pant n°	Organi- sation short name	For transnat ional Access	For any other activities					Consortiu	Other specific activities				Total	
				reque (first 18	ated eligible costs and ested EC contribution a months of the project)	RTD activities (1)	Demonstr ation activities (2)	Managama	Coordinati on/Networ king (4)	Transnatio nal access (5)	Connectivi ty (6)	Other including Specific Service Activities for CND (7)	(8)= (1)+(2)+(3) +(4)+(5)+(6)+(7)	Total receipts
	ICL		AC	Eligible costs	Direct costs (a)	0			22 750				22 750	
					of which subcontracting	0			0				0	
21					Indirect costs (b)	0			4 550				4 550	
					Total eligible costs (a)+(b)	0			27 300				27 300	
				Requested EC contribution		0			27 300				27 300	
	UMA		AC	Eligible costs	Direct costs (a)	0			10 833				10 833	
					of which subcontracting	0			0				0	
22					Indirect costs (b)	0			2 167				2 167	
					Total eligible costs (a)+(b)	0			13 000				13 000	
				Requested EC contribution		0			13 000				13 000	
					Eligible costs			447 600	492 600				14 598 500	
	ТО	TAL		Requested EC contribution		6 346 160 (+180000)*		187 260	447 700 (+44900)*				6 981 120 (+224900)*	

*Since the contract with EU is expected to be signed in 2003 and the agreement on Swiss participation in the 6th FP will not yet be in force, Swiss Partners should be funded by the Swiss Government